Medium-amplitude oscillatory shear (MAOS) is asymptotically nonlinear and a valuable tool for inferring structure from rheology. However, a drawback of conventional MAOS is the time and material intensive nature of experiments. Many strain amplitude sweeps, and typically multiple sample loadings, are required to obtain frequency-dependent properties. Here, we propose a new MAOS methodology that is much faster (fewer data points) and cheaper (fewer material loadings): The frequency-sweep MAOS. Similar to conventional frequency-sweep SAOS (small-amplitude oscillatory shear), we use only a frequency-sweep. A key challenge is that measurable MAOS data lie within a narrow and frequency-dependent domain between the instrument resolution (at small strain amplitudes) and nonlinear behavior beyond asymptotic nonlinearity (at large strain amplitudes). This necessitates a nonconstant strain amplitude γ0(ω) for the frequency-sweep instead of a single constant strain amplitude. We provide guidelines for finding this γ0(ω) trajectory for frequency-sweep MAOS. Full characterization of all four MAOS measures requires two frequency-sweeps: One frequency-sweep for the third-harmonic measures and two frequency-sweeps (at different input strain amplitudes) for the first-harmonic measures. We propose criteria to validate this MAOS data taken at a single strain amplitude based on ratios of stress harmonics; a similar idea is extended to validate frequency-sweep SAOS data as well. The proposed method of frequency-sweep MAOS is demonstrated for a polyvinyl alcohol-borax hydrogel. This new, faster, and material economical MAOS approach will be particularly beneficial for precious samples with very limited availability such as model polymers with well-defined architectures.

1.
Dealy
,
J.
, and
K.
Wissbrun
,
Melt Rheology and its Role in Plastics processing: Theory and Applications
(
Van Nostrand Reinhold
,
New York
,
1990
).
2.
Wilhelm
,
M.
, “
Fourier transform rheology
,”
Macromol. Mater. Eng.
287
,
83
105
(
2002
).
3.
Kallus
,
S.
,
N.
Willenbacher
,
S.
Kirsch
,
D.
Distler
,
T.
Neidhöfer
,
M.
Wilhelm
, and
H. W.
Spiess
, “
Characterization of polymer dispersions by Fourier transform rheology
,”
Rheol. Acta
40
,
552
559
(
2001
).
4.
Ewoldt
,
R. H.
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large-amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
5.
Ewoldt
,
R. H.
, “
Defining nonlinear rheological material functions for oscillatory shear
,”
J. Rheol.
57
,
177
195
(
2013
).
6.
Giacomin
,
A. J.
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Large-amplitude oscillatory shear flow from the corotational Maxwell model
,”
J. Non-Newtonian Fluid Mech.
166
,
1081
1099
(
2011
).
7.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large-amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
8.
Cho
,
K. S.
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
A geometrical interpretation of large-amplitude oscillatory shear response
,”
J. Rheol.
49
,
747
758
(
2005
).
9.
Rogers
,
S. A.
,
B. M.
Erwin
,
D.
Vlassopoulos
, and
M.
Cloitre
, “
A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid
,”
J. Rheol.
55
,
435
458
(
2011
).
10.
Ewoldt
,
R. H.
,
M. T.
Johnston
, and
L. M.
Caretta
, “
Experimental challenges of shear rheology: How to avoid bad data
,” in
Complex Fluids in Biological Systems
(
Springer
,
New York
,
2015
).
11.
Keentok
,
M.
, and
S.-C.
Xue
, “
Edge fracture in cone-plate and parallel plate flows
,”
Rheol. Acta
38
,
321
348
(
1999
).
12.
Larson
,
R. G.
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
,
213
263
(
1992
).
13.
Macosko
,
C. W.
,
Rheology: Principles, Measurements, and Applications
(
Wiley
,
New York
,
1994
).
14.
Tanner
,
R.
, and
M.
Keentok
, “
Shear fracture in cone
plate rheometry
,”
J. Rheol.
27
,
47
57
(
1983
).
15.
Fardin
,
M. A.
,
C.
Perge
,
L.
Casanellas
,
T.
Hollis
,
N.
Taberlet
,
J.
Ortín
,
S.
Lerouge
, and
S.
Manneville
, “
Flow instabilities in large-amplitude oscillatory shear: A cautionary tale
,”
Rheol. Acta
53
,
885
898
(
2014
).
16.
Ravindranath
,
S.
,
S.-Q.
Wang
,
M.
Olechnowicz
,
V.
Chavan
, and
R.
Quirk
, “
How polymeric solvents control shear inhomogeneity in large deformations of entangled polymer mixtures
,”
Rheol. Acta
50
,
97
105
(
2011
).
17.
Wang
,
S.-Q.
,
S.
Ravindranath
, and
P.
Boukany
, “
Homogeneous shear, wall slip, and shear banding of entangled polymeric liquids in simple-shear rheometry: A roadmap of nonlinear rheology
,”
Macromolecules
44
,
183
190
(
2011
).
18.
Paul
,
E.
, “
Non
Newtonian viscoelastic properties of rodlike molecules in solution: Comment on a paper by Kirkwood and Plock
,”
J. Chem. Phys.
51
,
1271
1272
(
1969
).
19.
Onogi
,
S.
,
T.
Masuda
, and
T.
Matsumoto
, “
Non-linear behavior of viscoelastic materials. I. Disperse systems of polystyrene solution and carbon black
,”
Trans. Soc. Rheol.
14
,
275
294
(
1970
).
20.
Pearson
,
D. S.
, and
W. E.
Rochefort
, “
Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields
,”
J. Polym. Sci.: Polym. Phys. Ed.
20
,
83
98
(
1982
).
21.
Doi
,
M.
, and
S.
Edwards
, “
Dynamics of concentrated polymer systems. Part 2.—Molecular motion under flow
,”
J. Chem. Soc. Faraday Trans. 2: Molecular Chem. Phys.
74
,
1802
1817
(
1978
).
22.
Doi
,
M.
, and
S.
Edwards
, “
Dynamics of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state
,”
J. Chem. Soc. Faraday Trans. 2: Molecular Chem. Phys.
74
,
1789
1801
(
1978
).
23.
Doi
,
M.
, and
S.
Edwards
, “
Dynamics of concentrated polymer systems. Part 3.—The constitutive equation
,”
J. Chem. Soc. Faraday Trans. 2: Molecular Chem. Phys.
74
,
1818
1832
(
1978
).
24.
Davis
,
W. M.
, and
C. W.
Macosko
, “
Nonlinear dynamic mechanical moduli for polycarbonate and PMMA
,”
J. Rheol.
22
,
53
71
(
1978
).
25.
Vrentas
,
J.
,
D.
Venerus
, and
C.
Vrentas
, “
Finite amplitude oscillations of viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
40
,
1
24
(
1991
).
26.
Bharadwaj
,
N. A.
, and
R. H.
Ewoldt
, “
Constitutive model fingerprints in medium-amplitude oscillatory shear
,”
J. Rheol.
59
,
557
592
(
2015
).
27.
Ewoldt
,
R. H.
, and
N. A.
Bharadwaj
, “
Low-dimensional intrinsic material functions for nonlinear viscoelasticity
,”
Rheol. Acta
52
,
201
219
(
2013
).
28.
Hyun
,
K.
,
K. H.
Ahn
,
S. J.
Lee
,
M.
Sugimoto
, and
K.
Koyama
, “
Degree of branching of polypropylene measured from Fourier-transform rheology
,”
Rheol. Acta
46
,
123
129
(
2006
).
29.
Hyun
,
K.
,
E. S.
Baik
,
K. H.
Ahn
,
S. J.
Lee
,
M.
Sugimoto
, and
K.
Koyama
, “
Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts
,”
J. Rheol.
51
,
1319
1342
(
2007
).
30.
Hyun
,
K.
, and
M.
Wilhelm
, “
Establishing a new mechanical nonlinear coefficient Q from FT-rheology: First investigation of entangled linear and comb polymer model systems
,”
Macromolecules
42
,
411
422
(
2009
).
31.
Wagner
,
M. H.
,
V. H.
Rolón-Garrido
,
K.
Hyun
, and
M.
Wilhelm
, “
Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers
,”
J. Rheol.
55
,
495
516
(
2011
).
32.
Fleury
,
G.
,
G.
Schlatter
, and
R.
Muller
, “
Non linear rheology for long chain branching characterization, comparison of two methodologies: Fourier transform rheology and relaxation
,”
Rheol. Acta
44
,
174
187
(
2004
).
33.
Hyun
,
K.
, and
M.
Wilhelm
, “
Non-linear rheology of entangled linear and branched polymer melts under large-amplitude oscillatory shear
,”
KGK. Kautschuk, Gummi, Kunststoffe
63
,
123
129
(
2010
).
34.
Neidhöfer
,
T.
,
S.
Sioula
,
N.
Hadjichristidis
, and
M.
Wilhelm
, “
Distinguishing linear from star
branched polystyrene solutions with fourier
transform rheology
,”
Macromol. Rapid Commun.
25
,
1921
1926
(
2004
).
35.
Schlatter
,
G.
,
G.
Fleury
, and
R.
Muller
, “
Fourier transform rheology of branched polyethylene: Experiments and models for assessing the macromolecular architecture
,”
Macromolecules
38
,
6492
6503
(
2005
).
36.
Song
,
H. Y.
,
O. S.
Nnyigide
,
R.
Salehiyan
, and
K.
Hyun
, “
Investigation of nonlinear rheological behavior of linear and 3-arm star 1, 4-cis-polyisoprene (PI) under medium amplitude oscillatory shear (MAOS) flow via FT-rheology
,”
Polymer
104
,
268
278
(
2016
).
37.
Vittorias
,
I.
,
M.
Parkinson
,
K.
Klimke
,
B.
Debbaut
, and
M.
Wilhelm
, “
Detection and quantification of industrial polyethylene branching topologies via Fourier-transform rheology, NMR and simulation using the Pom-pom model
,”
Rheol. Acta
46
,
321
340
(
2007
).
38.
Neidhöfer
,
T.
,
M.
Wilhelm
, and
B.
Debbaut
, “
Fourier-transform rheology experiments and finite-element simulations on linear polystyrene solutions
,”
J. Rheol.
47
,
1351
1371
(
2003
).
39.
Papon
,
A. l.
,
S.
Merabia
,
L.
Guy
,
F.
Lequeux
,
H.
Montes
,
P.
Sotta
, and
D. R.
Long
, “
Unique nonlinear behavior of nano-filled elastomers: From the onset of strain softening to large-amplitude shear deformations
,”
Macromolecules
45
,
2891
2904
(
2012
).
40.
Bharadwaj
,
N. A.
,
K. S.
Schweizer
, and
R. H.
Ewoldt
, “
A strain stiffening theory for transient polymer networks under asymptotically nonlinear oscillatory shear
,”
J. Rheol.
61
,
643
665
(
2017
).
41.
Gurnon
,
A.
, and
N. J.
Wagner
, “
Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles
,”
J. Rheol.
56
,
333
351
(
2012
).
42.
Ewoldt
,
R. H.
, and
G. H.
McKinley
, “
Mapping thixo-elasto-visco-plastic behavior
,”
Rheol. Acta
56
,
195
210
(
2017
).
43.
Pipkin
,
A. C.
,
Lectures on Viscoelastic Theory
(
Springer
,
New York
,
1972
).
44.
Ewoldt
,
R. H.
,
A.
Gurnon
,
C.
López-Barrón
,
G. H.
McKinley
,
J.
Swan
, and
N.
Wagner
, “
LAOS rheology Day, Friday the 13th, Colburn laboratory, University of Delaware
,”
Rheol. Bull.
81
,
12
18
(
2012
).
45.
Keita
,
G.
,
A.
Ricard
,
R.
Audebert
,
E.
Pezron
, and
L.
Leibler
, “
The poly (vinyl alcohol)-borate system: Influence of polyelectrolyte effects on phase diagrams
,”
Polymer
36
,
49
54
(
1995
).
46.
Koike
,
A.
,
N.
Nemoto
,
T.
Inoue
, and
K.
Osaki
, “
Dynamic light scattering and dynamic viscoelasticity of poly (vinyl alcohol) in aqueous borax solutions. I: Concentration effect
,”
Macromolecules
28
,
2339
2344
(
1995
).
47.
Kurokawa
,
H.
,
M.
Shibayama
,
T.
Ishimaru
,
S.
Nomura
, and
W.-l.
Wu
, “
Phase behaviour and sol-gel transition of poly (vinyl alcohol)-borate complex in aqueous solution
,”
Polymer
33
,
2182
2188
(
1992
).
48.
Lin
,
H.-L.
,
Y.-F.
Liu
,
T. L.
Yu
,
W.-H.
Liu
, and
S.-P.
Rwei
, “
Light scattering and viscoelasticity study of poly (vinyl alcohol)–borax aqueous solutions and gels
,”
Polymer
46
,
5541
5549
(
2005
).
49.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics
(
Wiley
,
New York
,
1987
).
50.
Bharadwaj
,
N. A.
, and
R. H.
Ewoldt
, “
Single-point parallel disk correction for asymptotically nonlinear oscillatory shear
,”
Rheol. Acta
54
,
223
233
(
2015
).
51.
Ewoldt
,
R. H.
,
P.
Winter
, and
G. H.
McKinley
,
MITlaos version 2.1 Beta for MATLAB (Computer Software)
(
Cambridge
,
MA
,
2007
).
52.
Ewoldt
,
R. H.
,
P.
Winter
, and
G. H.
McKinley
,
MITlaos User Manual Version 2.1 Beta for MATLAB
(,
2007
).
53.
Beckwith
,
T. G.
,
R. D.
Marangoni
, and
J. H.
Lienhard
,
Mechanical Measurements
(
Addison-Wesley Publishing Company
,
Reading, MA
,
1993
).
54.
Astarita
,
G.
, and
R.
Jongschaap
, “
The maximum amplitude of strain for the validity of linear viscoelasticity
,”
J. Non-Newtonian Fluid Mech.
3
,
281
287
(
1978
).
55.
Jongschaap
,
R.
,
K.
Knapper
, and
J.
Lopulissa
, “
On the limit of linear viscoelastic response in the flow between eccentric rotating disks
,”
Polym. Eng. Sci.
18
,
788
792
(
1978
).
56.
Bharadwaj
,
N. A.
, and
R. H.
Ewoldt
, “
The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear
,”
J. Rheol.
58
,
891
910
(
2014
).
57.
See supplementary material at https://doi.org/10.1122/1.4999795 for the full strain-sweep MAOS dataset (including MAOS fits), two additional frequency-sweep MAOS case studies, comparison of experimentally determined SAOS and MAOS sweet-spots, and SAOS regime identification and reversibility verification with respect to applied strain amplitude for the PVA-borax hydrogel.
58.
Ewoldt
,
R. H.
,
T. M.
Winegard
, and
D. S.
Fudge
, “
Non-linear viscoelasticity of hagfish slime
,”
Int. J. Non-Linear Mech.
46
,
627
636
(
2011
).
59.
Storm
,
C.
,
J. J.
Pastore
,
F. C.
MacKintosh
,
T. C.
Lubensky
, and
P. A.
Janmey
, “
Nonlinear elasticity in biological gels
,”
Nature
435
,
191
194
(
2005
).
60.
Hadjichristidis
,
N.
,
H.
Iatrou
,
S.
Pispas
, and
M.
Pitsikalis
, “
Anionic polymerization: High vacuum techniques
,”
J. Polym. Sci. Part A: Polym. Chem.
38
,
3211
3234
(
2000
).

Supplementary Material

You do not currently have access to this content.