We studied the rheological and mechanical properties of a series of poly(vinyl alcohol) dual crosslink hydrogels, permanently crosslinked by glutaraldehyde and transiently crosslinked by borate ions, at various crosslinking densities. The contribution of the chemical and physical crosslinks to the dynamic moduli was first determined with linear oscillatory tests, and the additivity of the two contributions was validated. The single relaxation time of the system was interpreted as the physical bond breaking time which can be slowed down by reassociation of the open physical bonds before full relaxation. By comparing the Rouse relaxation time of the strand between two adjacent crosslinks with the healing time of the physical bonds, an increase in the relaxation time with decreasing density of physical crosslinks was explained. In all cases, the extensibility and stress at break of the gels were found to increase with the addition of physical crosslinks, but the extensibility increased the most for the smallest amount of chemical and physical crosslink densities while the stress at break increased the most for the most physically crosslinked system with a low chemical crosslink density. This strongly suggests that the toughening mechanism due to the presence of transient bonds can only be active on a network with a low density of chemical crosslinks. In large strain experiments, the tensile stress could be separated into a strain-dependent and a time-dependent term for all the crosslinking densities studied, and master curves of the reduced stress as a function of time were obtained. This showed that the chemical and physical crosslinks independently and additively contribute to the viscoelasticity of the dual crosslink gel.

1.
Winnik
,
M. A.
, and
A.
Yekta
, “
Associative polymers in aqueous solution
,”
Curr. Opin. Colloid Interface Sci.
2
,
424
436
(
1997
).
2.
Glass
,
J. E.
,
Associative Polymers in Aqueous Solution
, ACS Symposium Series 765 (
American Chemical Society
,
Washington
,
2000
).
3.
Chassenieux
,
C.
,
T.
Nicolai
, and
L.
Benyahia
, “
Rheology of associative polymer solutions
,”
Curr. Opin. Colloid Interface Sci.
16
,
18
26
(
2011
).
4.
Leibler
,
L.
,
M.
Rubinstein
, and
R. H.
Colby
, “
Dynamics of reversible networks
,”
Macromolecules
24
,
4701
4707
(
1991
).
5.
Semenov
,
A. N.
, and
M.
Rubinstein
, “
Thermoreversible gelation in solutions of associating polymers. 1. Statics
,”
Macromolecules
31
,
1373
1385
(
1998
).
6.
Rubinstein
,
M.
, and
A. N.
Semenov
, “
Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics
,”
Macromolecules
31
,
1386
1397
(
1998
).
7.
Nakaya-Yaegashi
,
K.
,
L.
Ramos
,
H.
Tabuteau
, and
C.
Ligoure
, “
Linear viscoelasticity of entangled wormlike micelles bridged by telechelic polymers: An experimental model for a double transient network
,”
J. Rheol.
52
,
359
377
(
2008
).
8.
Brassinne
,
J.
,
A. M.
Stevens
,
E.
Van Ruymbeke
,
J.-F.
Gohy
, and
C.-A.
Fustin
, “
Hydrogels with dual relaxation and two-step gel-sol transition from heterotelechelic polymers
,”
Macromolecules
46
,
9134
9143
(
2013
).
9.
Narita
,
T.
,
K.
Mayumi
,
G.
Ducouret
, and
P.
Hebraud
, “
Viscoelastic properties of poly(vinyl alcohol) hydrogels having permanent and transient cross-links studied by microrheology, classical rheometry, and dynamic light scattering
,”
Macromolecules
46
(
10
),
4174
4183
(
2013
).
10.
Mayumi
,
K.
,
A.
Marcellan
,
G.
Ducouret
,
C.
Creton
, and
T.
Narita
, “
Stress-strain relationship of highly stretchable dual cross-link gels: Separability of strain and time effect
,”
ACS Macro Lett.
2
(
12
),
1065
1068
(
2013
).
11.
Long
,
R.
,
K.
Mayumi
,
C.
Creton
,
T.
Narita
, and
C. Y.
Hui
, “
Time dependent behavior of a dual cross-link self-healing gel: Theory and experiments
,”
Macromolecules
47
(
20
),
7243
7250
(
2014
).
12.
Long
,
R.
,
K.
Mayumi
,
C.
Creton
,
T.
Narita
, and
C.-Y.
Hui
, “
Rheology of a dual crosslink self-healing gel: Theory and measurement using parallel-plate torsional rheometry
,”
J. Rheol.
59
(
3
)
643
665
(
2015
).
13.
Mayumi
,
K.
,
J.
Guo
,
T.
Narita
,
C. Y.
Hui
, and
C.
Creton
, “
Fracture of dual crosslink gels with permanent and transient crosslinks
,”
Extreme Mech. Lett.
6
,
52
59
(
2016
).
14.
Guo
,
J.
,
R.
Long
,
K.
Mayumi
, and
C.-Y.
Hui
, “
Mechanics of a dual cross-link gel with dynamic bonds: Steady state kinetics and large deformation effects
,”
Macromolecules
49
,
3497
3507
(
2016
).
15.
Schultz
,
R. K.
, and
R. R.
Myers
, “
The chemorheology of poly(vinyl alcohol)-borate gels
,”
Macromolecules
2
,
281
285
(
1969
).
16.
Sinton
,
S. W.
, “
Complexation chemistry of sodium borate with poly(vinyl alcohol) and small diols. A 11B NMR study
,”
Macromolecules
20
,
2430
2441
(
1987
).
17.
Leibler
,
L.
,
P.
Erwoan
, and
P. A.
Pincus
, “
Viscosity behavior of polymer solutions in the presence of complexing ions
,”
Polymer
29
(
6
),
1105
1109
(
1988
).
18.
Ahn
,
K. H.
, and
A.
Onuki
, “
A network model for predicting the shear thickening behavior of a poly(vinyl alcohol) sodium-borate aqueous solution
,”
J. Non-Newtonian Fluid Mech.
55
,
215
227
(
1994
).
19.
Narita
,
T.
, and
T.
Indei
, “
Microrheological study of physical gelation in living polymeric networks
,”
Macromolecules
49
,
4634
4646
(
2016
).
20.
Abdurrahmanoglu
,
S.
,
V.
Can
, and
O.
Okay
, “
Design of high-toughness polyacrylamide hydrogels by hydrophobic modification
,”
Polymer
50
(
23
),
5449
5455
(
2009
).
21.
Sun
,
J.-Y.
,
X.
Zhao
,
W. R. K.
Illeperuma
,
O.
Chaudhuri
,
K. H.
Oh
,
D. J.
Mooney
,
J. J.
Vlassak
, and
Z.
Suo
, “
Highly stretchable and tough hydrogels
,”
Nature
489
,
133
136
(
2012
).
22.
Lin
,
P.
,
S.
Ma
,
X.
Wang
, and
F.
Zhou
, “
Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery
,”
Adv. Mater.
27
(
12
),
2054
2059
(
2015
).
23.
Shibayama
,
M.
,
T.
Takeuchi
, and
S.
Nomura
, “
Swelling/shrinking and dynamic light scattering studies on chemically cross-linked poly(vinyl alcohol) gels in the presence of borate ions
,”
Macromolecules
27
(
9
),
5350
5358
(
1994
).
24.
Huang
,
G.
,
H.
Zhang
,
Y.
Liu
,
H.
Chang
,
H.
Zhang
,
H.
Song
,
D.
Xu
, and
T.
Shi
, “
Strain hardening behavior of poly(vinyl alcohol)/borate hydrogels
,”
Macromolecules
50
,
2124
2135
(
2017
).
25.
Indei
,
T.
, and
J.
Takimoto
, “
Linear viscoelastic properties of transient networks formed by associating polymers with multiple stickers
,”
J. Chem. Phys.
133
,
194902
(
2010
).
26.
Li
,
H.
,
W.
,
Hang
,
X.
Zhang
,
J.
Shen
,
B.
Liu
, and
C.
Gao
, “
Single molecule force spectroscopy on poly(vinyl alcohol) by atomic force microscopy
,”
Macromol. Rapid Commun.
19
,
609
611
(
1998
).
27.
Seitz
,
M. E.
,
D.
Martina
,
T.
Baumberger
,
V. R.
Krishnan
,
C. Y.
Hui
, and
K. R.
Shull
, “
Fracture and large strain behavior of self-assembled triblock copolymer gels
,”
Soft Matter
5
,
447
456
(
2009
).
28.
Erk
,
K. A.
, and
K. R.
Shull
, “
Rate-dependent stiffening and strain localization in physically associating solutions
,”
Macromolecules
44
,
932
939
(
2011
).
29.
Séréro
,
Y.
,
V.
Jacobsen
,
J. F.
Berret
, and
R.
May
, “
Evidence of nonlinear chain stretching in the rheology of transient networks
,”
Macromolecules
33
,
1841
1847
(
2000
).
30.
Luo
,
F.
,
T. L.
Sun
,
T.
Nakajima
,
T.
Kurokawa
,
Y.
Zhao
,
A. B.
Ihsan
,
H. L.
Guo
,
X. F.
Li
, and
J. P.
Gong
, “Crack Blunting and Advancing Behaviors of Tough and Self-healing Polyampholyte Hydrogel,”
Macromolecules
47
,
6037
6046
(
2014
).
31.
Sun
,
T. L.
,
T.
Kurokawa
,
S.
Kuroda
,
A. B.
Ihsan
,
T.
Akasaki
,
K.
Sato
,
M. A.
Haque
,
T.
Nakajima
, and
J. P.
Gong
, “Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity,”
Nat. Mater.
12
(
10
),
932
937
(
2013
).
You do not currently have access to this content.