Human whole saliva consists of a physically-associated network of mucin molecules. The interchain physical associations control the rheological characteristics of the solution and in particular, the lifetime of filaments and threads. Measurements show that the shear rheology of salivary mucin solutions (as measured by steady shear viscosity and small amplitude oscillatory shear) is quite insensitive to sample age over a 24 h period following sample collection. By contrast, the filament thinning dynamics vary dramatically, with the characteristic relaxation time of the saliva and the breakup time of a fluid thread decreasing significantly with sample age. We interpret our results within the framework of a sticky finitely extensible network model which respects the known physical dimensions and properties of the mucin molecules in saliva and models them as a network of physically associating and finitely extensible polymer chains. The model predicts an initially strain-hardening response in the transient extensional rheology, followed by a sudden extensional thinning and filament rupture as the chains approach their maximum extensibility and the tension between junction points increases rapidly. We show that the model can accurately capture the changes observed in the filament thinning dynamics with sample age by incorporating a steady decrease in the molecular weight of the supramolecular aggregates of mucin. These experimental observations highlight the importance of considering sample age and enzymatic degradation when reporting extensional rheological measurements of saliva.

1.
Vincent
,
R. R. R.
,
B. W.
Mansel
,
A.
Kramer
,
K.
Kroy
, and
M. A. K.
Williams
, “
Micro-rheological behaviour and nonlinear rheology of networks assembled from polysaccharides from the plant cell wall
,”
New J. Phys.
15
,
035002
(
2013
).
2.
Kroy
,
K.
, “
Dynamics of wormlike and glassy wormlike chains
,”
Soft Matter
4
(
12
),
2323
2330
(
2008
).
3.
Kollmannsberger
,
P.
, and
B.
Fabry
, “
Linear and nonlinear rheology of living cells
,”
Annu. Rev. Mater. Res.
41
,
75
97
(
2011
).
4.
Evans
,
E.
, and
K.
Ritchie
, “
Dynamic strength of molecular adhesion bonds
,”
Biophys. J.
72
(
4
),
1541
1555
(
1997
).
5.
Ewoldt
,
R. H.
,
T. M.
Winegard
, and
D. S.
Fudge
, “
Non-linear viscoelasticity of hagfish slime
,”
Int. J. Non-Linear Mech.
46
,
627
636
(
2011
).
6.
Broedersz
,
C. P.
,
M.
Depken
,
N. Y.
Yao
,
M. R.
Pollak
,
D. A.
Weitz
, and
F. C.
MacKintosh
, “
Cross-link-governed dynamics of biopolymer networks
,”
Phys. Rev. Lett.
105
(
23
),
238101
(
2010
).
7.
Leibler
,
L.
,
M.
Rubinstein
, and
R. H.
Colby
, “
Dynamics of reversible networks
,”
Macromolecules
24
(
16
),
4701
4707
(
1991
).
8.
Tripathi
,
A.
,
K. C.
Tam
, and
G. H.
McKinley
, “
Rheology and dynamics of associative polymers in shear and extension: Theory and experiments
,”
Macromolecules
39
,
1981
1999
(
2006
).
9.
Voynow
,
J. A.
, and
B. K.
Rubin
, “
Mucins, mucus, and sputum
,”
Chest
135
(
2
),
505
512
(
2009
).
10.
Schipper
,
R. G.
,
E.
Silletti
, and
M. H.
Vingerhoeds
, “
Saliva as research material: Biochemical, physicochemical and practical aspects
,”
Arch. Oral Biol.
52
(
12
),
1114
1135
(
2007
).
11.
Celli
,
J. P.
,
B. S.
Turner
,
N. H.
Afdhal
,
R. H.
Ewoldt
,
G. H.
McKinley
,
R.
Bansil
, and
S.
Erramilli
, “
Rheology of gastric mucin exhibits a pH-dependent sol-gel transition
,”
Biomacromolecules
8
(
5
),
1580
1586
(
2007
).
12.
Bongaerts
,
J. H. H.
,
D.
Rossetti
, and
J. R.
Stokes
, “
The lubricating properties of human whole saliva
,”
Tribol. Lett.
27
(
3
),
277
287
(
2007
).
13.
Stokes
,
J. R.
, and
G. A.
Davies
, “
Viscoelasticity of human whole saliva collected after acid and mechanical stimulation
,”
Biorheology
44
(
3
),
141
160
(
2007
).
14.
Esser
,
D.
,
G.
Alvarez-Llamas
,
M.
de Vries
,
D.
Weening
,
R. J.
Vonk
, and
H.
Roelofsen
, “
Sample stability and protein composition of saliva: Implications for its use as a diagnostic fluid
,”
Biomarker Insights
2008
(
3
),
25
37
.
15.
Bazilevsky
,
A. V.
,
V. M.
Entov
, and
A. N.
Rozhkov
, “
Breakup of a liquid bridge as a method of rheological testing of biological fluids
,”
Fluid Dyn.
46
(
4
),
613
622
(
2011
).
16.
Zussman
,
E.
,
A. L.
Yarin
, and
R. M.
Nagler
, “
Age- and flow-dependency of salivary viscoelasticity
,”
J. Dent. Res.
86
(
3
),
281
285
(
2007
).
17.
Aggazzotti
,
A.
, “
Modificazioni della viscosita della saliva mista dopo che e'stata secretata in rapporto col potere filante e colla tensione superficiale
,”
Arch. Fisiol.
20
,
3
15
(
1922
).
18.
Bansil
,
R.
, and
B. S.
Turner
, “
Mucin structure, aggregation, physiological functions and biomedical applications
,”
Curr. Opin. Colloid Interface Sci.
11
,
164
170
(
2006
).
19.
Kesimer
,
M.
,
A. M.
Makhov
,
J. D.
Griffith
,
P.
Verdugo
, and
J. K.
Sheehan
, “
Unpacking a gel-forming mucin: A view of MUC5B organization after granular release
,”
Am. J. Physiol. Lung Cell Mol. Physiol.
298
(
1
),
L15
L22
(
2010
).
20.
Bird
,
R. B.
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Kinetic Theory
(
Wiley and Sons
,
USA
,
1987
), Vol.
2
.
21.
Dekker
,
J.
,
J. W. A.
Rossen
,
H. A.
Büller
, and
A. W. C.
Einerhand
, “
The MUC family: An obituary
,”
Trends Biochem. Sci.
27
(
3
),
126
131
(
2002
).
22.
Cao
,
X.
,
R.
Bansil
,
K. R.
Bhaskar
,
B. S.
Turner
,
J. T.
LaMont
,
N.
Niu
, and
N. H.
Afdhal
, “
pH-dependent conformational change of gastric mucin leads to sol-gel transition
,”
Biophys. J.
76
(
3
),
1250
1258
(
1999
).
23.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
24.
Taylor
,
C.
,
A.
Allen
,
P. W.
Dettmar
, and
J. P.
Pearson
, “
The gel matrix of gastric mucus is maintained by a complex interplay of transient and nontransient associations
,”
Biomacromolecules
4
(
4
),
922
927
(
2003
).
25.
Raynal
,
B. D. E.
,
T. E.
Hardingham
,
D. J.
Thornton
, and
J. K.
Sheehan
, “
Concentrated solutions of salivary MUC5B mucin do not replicate the gel-forming properties of saliva
,”
Biochem. J.
362
,
289
296
(
2002
).
26.
Ye
,
X.
,
R. G.
Larson
,
C.
Pattamaprom
, and
T.
Sridhar
, “
Extensional properties of monodisperse and bidisperse polystyrene solutions
,”
J. Rheol.
47
(
2
),
443
468
(
2003
).
27.
Lodish
,
H.
,
A.
Berk
,
S. L.
Zipursky
,
P.
Matsudaira
,
D.
Baltimore
, and
J.
Darnell
,
Molecular Cell Biology
, 4th ed. (
W. H. Freeman and Company
,
New York
,
2000
).
28.
Tanaka
,
F.
, and
S. F.
Edwards
, “
Viscoelastic properties of physically crosslinked networks Part 1. Non-linear stationary viscoelasticity
,”
J. Non-Newtonian Fluid Mech.
43
(2–3),
247
271
(
1992
).
29.
Tanaka
,
F.
, and
S. F.
Edwards
, “
Viscoelastic properties of physically crosslinked networks Part 2. Dynamic mechanical moduli
,”
J. Non-Newtonian Fluid Mech
43
(
2–3
),
273
288
(
1992
).
30.
Vaccaro
,
A.
, and
G.
Marrucci
, “
A model for the nonlinear rheology of associating polymers
,”
J. Non-Newtonian Fluid Mech.
92
(
2-3
),
261
273
(
2000
).
31.
van den Brule
,
B. H. A. A.
, and
P. J.
Hoogerbrugge
, “
Brownian dynamics simulation of reversible polymeric networks
,”
J. Non-Newtonian Fluid Mech.
60
(
2-3
),
303
334
(
1995
).
32.
Bird
,
R. B.
,
P. J.
Dotson
, and
N. L.
Johnson
, “
Polymer solution rheology based on a finitely extensible bead—spring chain model
,”
J. Non-Newtonian Fluid Mech.
7
(
2-3
),
213
235
(
1980
).
33.
Green
,
M. S.
, and
A. V.
Tobolsky
, “
A new approach to the theory of relaxing polymeric media
,”
J. Chem. Phys.
14
(
2
),
80
92
(
1946
).
34.
Ng
,
T. S. K.
,
G. H.
McKinley
, and
R. H.
Ewoldt
, “
Large amplitude oscillatory shear flow of gluten dough: A model power-law gel
,”
J. Rheol.
55
(
3
),
627
654
(
2011
).
35.
Entov
,
V. M.
, and
E. J.
Hinch
, “
Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid
,”
J. Non-Newtonian Fluid Mech.
72
(
1
),
31
53
(
1997
).
36.
Hoyle
,
D. M.
,
Q.
Huang
,
D.
Auhl
,
D.
Hassell
,
H. K.
Rasmussen
,
A. L.
Skov
,
O. G.
Harlen
,
O.
Hassager
, and
T. C. B.
McLeish
, “
Transient overshoot extensional rheology of long-chain branched polyethylenes: Experimental and numerical comparisons between filament stretching and cross-slot flow
,”
J. Rheol.
57
(
1
),
293
313
(
2013
).
37.
Clasen
,
C.
,
J. P.
Plog
,
W.-M.
Kulicke
,
M.
Owens
,
C.
Macosko
,
L. E.
Scriven
,
M.
Verani
, and
G. H.
McKinley
, “
How dilute are dilute solutions in extensional flows?
,”
J. Rheol.
50
,
849
881
(
2006
).
38.
Cromer
,
M.
,
L. P.
Cook
, and
G. H.
McKinley
, “
Extensional flow of wormlike micellar solutions
,”
Chem. Eng. Sci.
64
(
22
),
4588
4596
(
2009
).
39.
Wagner
,
C.
,
L.
Bourouiba
, and
G. H.
McKinley
, “
An analytic solution for capillary thinning and breakup of FENE-P fluids
,”
J. Non-Newtonian Fluid Mech.
218
,
53
61
(
2015
).
40.
Hallmark
,
B.
,
D. I.
Wilson
, and
N.
Pistre
, “
Characterization of extensional rheological filament stretching with a dual-mode Giesekus model
,”
AIChE J.
62
(
6
),
2188
2199
(
2016
).
41.
Prabhakar
,
R.
,
S.
Gadkari
,
T.
Gopesh
, and
M. J.
Shaw
, “
Influence of stretching induced self-concentration and self-dilution on coil-stretch hysteresis and capillary thinning of unentangled polymer solutions
,”
J. Rheol.
60
(
3
),
345
366
(
2016
).
42.
Renardy
,
M.
, “
Self-similar breakup of a Giesekus jet
,”
J. Non-Newtonian Fluid Mech.
97
(
2-3
),
283
293
(
2001
).
43.
Renardy
,
M.
, “
Similarity solutions for jet breakup for various models of viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
104
(
1
),
65
74
(
2002
).
44.
Renardy
,
M.
, “
Self-similar jet breakup for a generalized PTT model
,”
J. Non-Newtonian Fluid Mech.
103
(
2-3
),
261
269
(
2002
).
45.
Renardy
,
M.
, “
Self-similar breakup of non-Newtonian liquid jets
,”
Rheol. Rev.
2
,
171
196
(
2004
).
46.
Frenkel
,
E. S.
, and
K.
Ribbeck
, “
Salivary mucins protect surfaces from colonization by cariogenic bacteria
,”
Appl. Environ. Microbiol.
81
(
1
),
332
338
(
2015
).
47.
Jaishankar
,
A.
, and
G. H.
McKinley
, “
A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids
,”
J. Rheol.
58
(
6
),
1751
1788
(
2014
).
48.
Wagner
,
C. E.
,
A. C.
Barbati
,
J.
Engmann
,
A. S.
Burbidge
, and
G. H.
McKinley
, “
Quantifying the consistency and rheology of liquid foods using fractional calculus
,”
Food Hydrocolloids
69
,
242
254
(
2017
).
49.
Israelachvili
,
J.
, and
R.
Pashley
, “
The hydrophobic interaction is long range, decaying exponentially with distance
,”
Nature
300
(
5890
),
341
342
(
1982
).
50.
Grodzinsky
,
A. J.
,
Fields Forces and Flows in Biological Systems
(
Garland Science
,
New York
,
2008
).
51.
MacCallum
,
J. R.
, “
The kinetics of depolymerization of addition polymers
,”
Eur. Polym. J.
2
,
413
422
(
1966
).
52.
Anthamatten
,
M.
, “
Hydrogen bonding in supramolecular polymer networks: Glasses, melts, and elastomers
,” in
Supramolecular Polymer Networks and Gels from the Series Advances in Polymer Science
, edited by
S.
Seiffert
(
Springer International Publishing
,
Switzerland
,
2015
), Vol.
268
, Chap. 2, pp.
47
99
.
53.
Stille
,
J. K.
, “
Step-growth polymerization
,”
J. Chem. Educ.
58
(
11
),
862
866
(
1981
).
54.
Kheirandish
,
S.
,
I.
Gubaydullin
,
W.
Wohlleben
, and
N.
Willenbacher
, “
Shear and elongational flow behavior of acrylic thickener solutions. Part I: Effect of intermolecular aggregation
,”
Rheol. Acta
47
(
9
),
999
1013
(
2008
).
55.
Kheirandish
,
S.
,
I.
Gubaydullin
, and
N.
Willenbacher
, “
Shear and elongational flow behavior of acrylic thickener solutions. Part II: Effect of gel content
,”
Rheol. Acta
48
(
4
),
397
407
(
2009
).
56.
Storz
,
H.
,
U.
Zimmermann
,
H.
Zimmermann
, and
W. M.
Kulicke
, “
Viscoelastic properties of ultra-high viscosity alginates
,”
Rheol. Acta
49
(
2
),
155
167
(
2010
).
57.
Rodríguez-Rivero
,
C.
,
L.
Hilliou
,
E. M.
Martín del Valle
, and
M. A.
Galán
, “
Rheological characterization of commercial highly viscous alginate solutions in shear and extensional flows
,”
Rheol. Acta
53
(
7
),
559
570
(
2014
).
58.
Groot
,
R. D.
,
A.
Bot
, and
W. G. M.
Agterof
, “
Molecular theory of the yield behavior of a polymer gel: Application to gelatin
,”
J. Chem. Phys.
104
(
22
),
9220
9233
(
1996
).
59.
Ahmadi
,
M.
,
L. G. D.
Hawke
,
H.
Goldansaz
, and
E.
Van Ruymbeke
, “
Dynamics of entangled linear supramolecular chains with sticky side groups: Influence of hindered fluctuations
,”
Macromolecules
48
(
19
),
7300
7310
(
2015
).
60.
Annable
,
T.
,
R.
Buscall
,
R.
Ettelaie
, and
D.
Whittlestone
, “
The rheology of solutions of associating polymers: Comparison of experimental behavior with transient network theory
,”
J. Rheol.
37
(
4
),
695
726
(
1993
).
61.
Semmrich
,
C.
,
T.
Storz
,
J.
Glaser
,
R.
Merkel
,
A. R.
Bausch
, and
K.
Kroy
, “
Glass transition and rheological redundancy in F-actin solutions
,”
Proc. Natl. Acad. Sci.
104
(
51
),
20199
20203
(
2007
).
62.
Alcaraz
,
J.
,
L.
Buscemi
,
M.
Grabulosa
,
X.
Trepat
,
B.
Fabry
,
R.
Farré
, and
D.
Navajas
, “
Microrheology of human lung epithelial cells measured by atomic force microscopy
,”
Biophys. J.
84
(
3
),
2071
2079
(
2003
).
You do not currently have access to this content.