Polymer chains having type-A dipoles parallel along the chain backbone exhibit slow dielectric relaxation reflecting their global motion. For monofunctionally head-associative Rouse chains having type-A dipoles, the Rouse equation of motion was combined with the association/dissociation kinetics to calculate the dielectric relaxation function, Φj(t) with j = 1 and 2 for unimer and dimer. Φ1(t) reflects the orientation of the end-to-end vector of the unimer, whereas Φ2(t) detects the orientation of two end-to-center vectors of the dimer (having symmetrical dipole inversion), both being in the direction of the applied electric field. The calculation was made by mapping the conformation of dissociating dimer onto the created unimer and vice versa with the aid of the Rouse eigenmode expansion of the bond vector of segments (Gaussian subchains). It turned out that Φj(t) is not influenced by the association/dissociation reaction. This result makes a striking contrast to the behavior of the viscoelastic relaxation function gj(t): gj(t) is strongly affected by the motional coupling between the unimer and dimer due to the reaction [H. Watanabe et al., Macromolecules 48, 3014–3030 (2015)]. This difference emerged because the dielectric Φj(t) corresponds to the vectorial first-moment average of the segmental bond vector at time t, u(n,t) with n being the segment index, whereas the viscoelastic gj(t) corresponds to the tensorial second-moment average. Because of this difference in the averaging moment, Φj(t) is subjected to cancelation in the conformational mapping but gj(t) is not, so that the reaction effect emerges only for gj(t). The experimental data of head-carboxylated high-cis polyisoprene chains (having the type-A dipoles), confirming this difference, are also presented.

1.
Annable
,
T.
,
R.
Buscall
,
R.
Ettelaie
, and
D.
Whittlestone
, “
The rheology of solutions of associating polymers: Comparison of experimental behavior with transient network theory
,”
J. Rheol.
37
,
695
726
(
1993
).
2.
Annable
,
T.
,
R.
Buscall
, and
R.
Ettelaie
, “
Network formation and its consequences for the physical behaviour of associating polymers in solution
,”
Colloids Surf. A
112
,
97
116
(
1996
).
3.
Tam
,
K. C.
,
R. D.
Jenkins
,
M. A.
Winnik
, and
D. R.
Bassett
, “
A structural model of hydrophobically modified urethane−ethoxylate (HEUR) associative polymers in shear flows
,”
Macromolecules
31
,
4149
4159
(
1998
).
4.
Kaczmarski
,
J. P.
,
M. R.
Tarng
,
Z.
Ma
, and
J. E.
Glass
, “
Surfactant and salinity influences on associative thickener aqueous solution rheology
,”
Colloids Surf. A
147
,
39
53
(
1999
).
5.
Ma
,
S. X.
, and
S. L.
Cooper
, “
Shear thickening in aqueous solutions of hydrocarbon end-capped poly(ethylene oxide)
,”
Macromolecules
34
,
3294
3301
(
2001
).
6.
Pellens
,
L.
,
R. G.
Corrales
, and
J.
Mewis
, “
General nonlinear rheological behavior of associative polymers
,”
J. Rheol.
48
,
379
393
(
2004
).
7.
Suzuki
,
S.
,
T.
Uneyama
,
T.
Inoue
, and
H.
Watanabe
, “
Nonlinear rheology of telechelic associative polymer networks: Shear thickening and thinning behavior of hydrophobically modified ethoxylated urethane (HEUR) in aqueous solution
,”
Macromolecules
45
,
888
898
(
2012
).
8.
Suzuki
,
S.
,
T.
Uneyama
, and
H.
Watanabe
, “
Concentration dependence of nonlinear rheological properties of hydrophobically modified ethoxylated urethane aqueous solutions
,”
Macromolecules
46
,
3497
3504
(
2013
).
9.
Uneyama
,
T.
,
S.
Suzuki
, and
H.
Watanabe
, “
Concentration dependence of rheological properties of telechelic associative polymer solutions
,”
Phys. Rev. E
86
,
031802
(
2012
).
10.
Du
,
Z.
,
B.
Ren
,
X.
Chang
,
R.
Dong
,
J.
Peng
, and
Z.
Tong
, “
Aggregation and rheology of an azobenzene-functionalized hydrophobically modified ethoxylated urethane in aqueous solution
,”
Macromolecules
49
,
4978
4988
(
2016
).
11.
Leibler
,
L.
,
M.
Rubinstein
, and
R. H.
Colby
, “
Dynamics of reversible networks
,”
Macromolecules
24
,
4701
4707
(
1991
).
12.
Pitsikalis
,
M.
,
N.
Hadjichristidis
, and
J. W.
Mays
, “
Model mono-, di-, and tri-ω-functionalized three-arm star polybutadienes association behavior in dilute solution by dynamic light scattering and viscometry
,”
Macromolecules
29
,
179
184
(
1996
).
13.
Vlassopoulos
,
D.
,
M.
Pitsikalis
, and
N.
Hadjichristidis
, “
Linear dynamics of end-functionalized polymer melts: Linear chains, stars, and blends
,”
Macromolecules
33
,
9740
9746
(
2000
).
14.
Kumar
,
S. K.
, and
J. F.
Douglas
, “
Gelation in physically associating polymer solutions
,”
Phys. Rev. Lett.
87
,
188301
(
2001
).
15.
Noro
,
A.
,
Y.
Matsushita
, and
T. P.
Lodge
, “
Thermoreversible supramacromolecular ion gels via hydrogen bonding
,”
Macromolecules
41
,
5839
5844
(
2008
).
16.
Noro
,
A.
,
Y.
Matsushita
, and
T. P.
Lodge
, “
Gelation mechanism of thermoreversible supramacromolecular ion gels via hydrogen bonding
,”
Macromolecules
42
,
5802
5810
(
2009
).
17.
Lei
,
Y.
, and
T. P.
Lodge
, “
Effects of component molecular weight on the viscoelastic properties of thermoreversible supramolecular ion gels via hydrogen bonding
,”
Soft Matter
8
,
2110
2120
(
2012
).
18.
van Ruymbeke
,
E.
,
D.
Vlassopoulos
,
M.
Mierzwa
,
T.
Pakula
,
D.
Charalabidis
,
M.
Pitsikalis
, and
N.
Hadjichristidis
, “
Rheology and structure of entangled telechelic linear and star polyisoprene melts
,”
Macromolecules
43
,
4401
4411
(
2010
).
19.
Ahmadi
,
M.
,
L. G. D.
Hawke
,
H.
Goldansaz
, and
E.
van Ruymbeke
, “
Dynamics of entangled linear supramolecular chains with sticky side groups: Influence of hindered fluctuations
,”
Macromolecules
48
,
7300
7310
(
2015
).
20.
Hashmi
,
S.
,
A.
GhavamiNejad
,
F. O.
Obiweluozor
,
M.
Vatankhah-Varnoosfaderani
, and
F. J.
Stadler
, “
Supramolecular interaction controlled diffusion mechanism and improved mechanical behavior of hybrid hydrogel systems of zwitterions and CNT
,”
Macromolecules
45
,
9804
9815
(
2012
).
21.
Chen
,
Q.
,
G. J.
Tudryn
, and
R. H.
Colby
, “
Ionomer dynamics and the sticky Rouse model
,”
J. Rheol.
57
,
1441
1462
(
2013
).
22.
Chen
,
Q.
,
C.
Huang
,
R. A.
Weiss
, and
R. H.
Colby
, “
Viscoelasticity of reversible gelation for ionomers
,”
Macromolecules
48
,
1221
1230
(
2015
).
23.
Huang
,
C.
,
Q.
Chen
, and
R. A.
Weiss
, “
Nonlinear rheology of random sulfonated polystyrene ionomers: The role of the sol-gel transition
,”
Macromolecules
49
,
9203
9214
(
2016
).
24.
Rubinstein
,
M.
, and
A. N.
Semenov
, “
Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics
,”
Macromolecules
31
,
1386
1397
(
1998
).
25.
Rubinstein
,
M.
, and
A. N.
Semenov
, “
Dynamics of entangled solutions of associating polymers
,”
Macromolecules
34
,
1058
1068
(
2001
).
26.
Watanabe
,
H.
,
Y.
Matsumiya
,
Y.
Masubuchi
,
O.
Urakawa
, and
T.
Inoue
, “
Viscoelastic relaxation of Rouse chains undergoing head-to-head association and dissociation: Motional coupling through chemical equilibrium
,”
Macromolecules
48
,
3014
3030
(
2015
).
27.
Kwon
,
Y.
,
H.
Watanabe
, and
Y.
Matsumiya
, “
Viscoelastic and orientational relaxation of linear and ring Rouse chains undergoing reversible end-association and dissociation
,”
Macromolecules
49
,
3593
3607
(
2016
).
28.
Matsumiya
,
Y.
,
H.
Watanabe
,
O.
Urakawa
, and
T.
Inoue
, “
Experimental test for viscoelastic relaxation of polyisoprene undergoing monofunctional head-to-head association and dissociation
,”
Macromolecules
49
,
7088
7095
(
2016
).
29.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
), Chap. 4.
30.
Watanabe
,
H.
, “
Viscoelasticity and dynamics of entangle polymers
,”
Prog. Polym. Sci.
24
,
1253
1403
(
1999
).
31.
Watanabe
,
H.
, “
Dielectric relaxation of type-A polymers in melts and solutions
,”
Macromol. Rapid Commun.
22
,
127
175
(
2001
).
32.
Cole
,
R. H.
, “
Correlation function theory of dielectric relaxation,”
J. Chem. Phys.
42
,
637
643
(
1965
).
33.
Uneyama
,
T.
,
Y.
Masubuchi
,
K.
Horio
,
Y.
Matsumiya
,
H.
Watanabe
,
J. A.
Pathak
, and
C. M.
Roland
, “
A theoretical analysis of rheodielectric response of type-A polymer chains
,”
J. Polym. Sci. Part B: Polym. Phys.
47
,
1039
1057
(
2009
).
34.
Riande
,
E.
, and
E.
Saiz
,
Dipole Moments and Birefringence of Polymers
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1992
), Chap. 5.
35.
Kremer
,
F
., and
A.
Schönhals
, “
Theory of dielectric relaxation
,” in
Broadband Dielectric Spectroscopy
, edited by
F.
Kremer
and
A.
Schönhals
(
Springer
,
Berlin
,
2003
), Chap. 1.
You do not currently have access to this content.