Associating polymers constitute a fascinating class of materials because of the richness in their rheological behavior. Their rheology is known to be mainly dictated by the nature and intrinsic stabilities of transient associations. Here, we provide a direct observation of the importance of free associating sites in the macroscopic relaxation of supramolecular networks constructed from ultrahigh molecular weight polymers with sparsely distributed stickers of finite functionality. Their rheological signature affords evidence that the macroscopic relaxation of supramolecular networks can be apparently dissociated from the intrinsic lifetime of the associating units, provided that diffusion processes do not lead to successful chain relaxation at the microscopic level.

1.
Leibler
,
L.
,
M.
Rubinstein
, and
R. H.
Colby
, “
Dynamics of reversible networks
,”
Macromolecules
24
,
4701
4707
(
1991
).
2.
Rubinstein
,
M.
, and
A. N.
Semenov
, “
Dynamics of entangled solutions of associating polymers
,”
Macromolecules
34
,
1058
1068
(
2001
).
3.
Rubinstein
,
M.
, and
A. V.
Dobrynin
, “
Solutions of associative polymers
,”
Trends Polym. Sci.
5
,
181
186
(
1997
).
4.
Winnik
,
M. A.
, and
A.
Yekta
, “
Associative polymers in aqueous solution
,”
Curr. Opin. Colloid Interface Sci.
2
,
424
436
(
1997
).
5.
Yu
,
G.
,
X.
Yan
,
C.
Han
, and
F.
Huang
, “
Characterization of supramolecular gels
,”
Chem. Soc. Rev.
42
,
6697
6722
(
2013
).
6.
Herbst
,
F.
,
D.
Döhler
,
P.
Michael
, and
W. H.
Binder
, “
Self-healing polymers via supramolecular forces
,”
Macromol. Rapid Commun.
34
,
203
220
(
2013
).
7.
Seiffert
,
S.
, and
J.
Sprakel
, “
Physical chemistry of supramolecular polymer networks
,”
Chem. Soc. Rev.
41
,
909
930
(
2012
).
8.
Baxandall
,
L.
, “
Dynamics of reversibly crosslinked chains
,”
Macromolecules
22
,
1982
1988
(
1989
).
9.
Marrucci
,
G.
,
S.
Bhargava
, and
S.
Cooper
, “
Models of shear-thickening behavior in physically cross-linked networks
,”
Macromolecules
26
,
6483
6488
(
1993
).
10.
Semenov
,
A. N.
, and
M.
Rubinstein
, “
Thermoreversible gelation in solutions of associative polymers. 1. Statics
,”
Macromolecules
31
,
1373
1385
(
1998
).
11.
Semenov
,
A.
, and
M.
Rubinstein
, “
Dynamics of entangled associating polymers with large aggregates
,”
Macromolecules
35
,
4821
4837
(
2002
).
12.
Ahmadi
,
M.
,
L. G. D.
Hawke
,
H.
Goldansaz
, and
E.
van Ruymbeke
, “
Dynamics of entangled linear supramolecular chains with sticky side groups: Influence of hindered fluctuations
,”
Macromolecules
48
,
7300
7310
(
2015
).
13.
Amin
,
D.
,
A. E.
Likhtman
, and
Z.
Wang
, “
Dynamics in supramolecular polymer networks formed by associating telechelic chains
,”
Macromolecules
49
,
7510
7524
(
2016
).
14.
Hawke
,
L.
,
M.
Ahmadi
,
H.
Goldansaz
, and
E.
Van Ruymbeke
, “
Viscoelastic properties of linear associating poly(n-butyl acrylate) chains
,”
J. Rheol.
60
,
297
310
(
2016
).
15.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
New interpretation of shear thickening in telechelic associating polymers
,”
Macromolecules
48
,
5439
5449
(
2015
).
16.
Tripathi
,
A.
,
K. C.
Tam
, and
G. H.
McKinley
, “
Rheology and dynamics of associative polymers in shear and extension: Theory and experiments
,”
Macromolecules
39
,
1981
1999
(
2006
).
17.
Watanabe
,
H.
,
Y.
Matsumiya
,
Y.
Masubuchi
,
O.
Urakawa
, and
T.
Inoue
, “
Viscoelastic relaxation of Rouse chains undergoing head-to-head association and dissociation: Motional coupling through chemical equilibrium
,”
Macromolecules
48
,
3014
3030
(
2015
).
18.
Boudara
,
V. A.
, and
D. J.
Read
, “
Stochastic and preaveraged nonlinear rheology models for entangled telechelic star polymers
,”
J. Rheol.
61
,
339
362
(
2017
).
19.
Rubinstein
,
M.
, and
A. N.
Semenov
, “
Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics
,”
Macromolecules
31
,
1386
1397
(
1998
).
20.
Stukalin
,
E. B.
,
L.-H.
Cai
,
N. A.
Kumar
,
L.
Leibler
, and
M.
Rubinstein
, “
Self-healing of unentangled polymer networks with reversible bonds
,”
Macromolecules
46
,
7525
7541
(
2013
).
21.
Gold
,
B. J.
,
C. H.
Hövelmann
,
N.
Lühmann
,
N. K.
Székely
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
, and
D.
Richter
, “
Importance of compact random walks for the rheology of transient networks
,”
ACS Macro Lett.
6
,
73
77
(
2017
).
22.
Hackelbusch
,
S.
,
T.
Rossow
,
P.
van Assenbergh
, and
S.
Seiffert
, “
Chain dynamics in supramolecular polymer networks
,”
Macromolecules
46
,
6273
6286
(
2013
).
23.
Perrier
,
S.
, and
P.
Takolpuckdee
, “
Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization
,”
J. Polym. Sci., Part A: Polym. Chem.
43
,
5347
5393
(
2005
).
24.
Moad
,
G.
,
J.
Chiefari
,
J.
Krstina
,
R. T. A.
Mayadunne
,
A.
Postma
,
E.
Rizzardo
, and
S. H.
Thang
, “
Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT)
,”
Polym. Int.
49
,
993
1001
(
2000
).
25.
Read
,
E.
,
A.
Guinaudeau
,
D. J.
Wilson
,
A.
Cadix
,
F.
Violleau
, and
M.
Destarac
, “
Low temperature RAFT/MADIX gel polymerisation: Access to controlled ultra-high molar mass polyacrylamides
,”
Polym. Chem.
5
,
2202
2207
(
2014
).
26.
Wilson
,
D. J.
,
J.
Brassinne
,
A.
Cadix
, and
J.-C.
Castaing
, France patent pending (2 December
2016
).
27.
Jongschaap
,
R.
,
R.
Wientjes
,
M.
Duits
, and
J.
Mellema
, “
A generalized transient network model for associative polymer networks
,”
Macromolecules
34
,
1031
1038
(
2001
).
28.
Rubinstein
,
M.
, and
A. V.
Dobrynin
, “
Associations leading to formation of reversible networks and gels
,”
Curr. Opin. Colloid Interface Sci.
4
,
83
87
(
1999
).
29.
Rossow
,
T.
,
A.
Habicht
, and
S.
Seiffert
, “
Relaxation and dynamics in transient polymer model networks
,”
Macromolecules
47
,
6473
6482
(
2014
).
30.
Indei
,
T.
,
T.
Koga
, and
F.
Tanaka
, “
Theory of shear-thickening in transient networks of associating polymers
,”
Macromol. Rapid Commun.
26
,
701
706
(
2005
).
31.
Xu
,
D. H.
,
L. L.
Hawk
,
D. M.
Loveless
,
S. L.
Jeon
, and
S. L.
Craig
, “
Mechanism of shear thickening in reversibly cross-linked supramolecular polymer networks
,”
Macromolecules
43
,
3556
3565
(
2010
).
32.
Xu
,
D.
, and
S. L.
Craig
, “
Strain hardening and strain softening of reversibly cross-linked supramolecular polymer networks
,”
Macromolecules
44
,
7478
7488
(
2011
).
33.
Kim
,
S. H.
,
H. G.
Sim
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear behavior of the network model for associating polymeric systems
,”
Korea-Aust. Rheol. J.
14
,
49
55
(
2002
).
34.
Sim
,
H. G.
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: A guideline for classification
,”
J. Non-Newtonian Fluid Mech.
112
,
237
250
(
2003
).
35.
Tapadia
,
P.
,
S.
Ravindranath
, and
S.-Q.
Wang
, “
Banding in entangled polymer fluids under oscillatory shearing
,”
Phys. Rev. Lett.
96
,
196001
(
2006
).
36.
Olmsted
,
P. D.
, “
Perspectives on shear banding in complex fluids
,”
Rheol. Acta
47
,
283
300
(
2008
).
37.
Graham
,
M. D.
, “
Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows
,”
J. Rheol.
39
,
697
712
(
1995
).
38.
Larson
,
R. G.
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
,
213
263
(
1992
).
39.
Groisman
,
A.
, and
V.
Steinberg
, “
Elastic turbulence in a polymer solution flow
,”
Nature
405
,
53
55
(
2000
).
40.
Atalık
,
K.
, and
R.
Keunings
, “
On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear
,”
J. Non-Newtonian Fluid Mech.
122
,
107
116
(
2004
).
You do not currently have access to this content.