Elastoviscoplastic materials present a transition from a gel-like to a liquidlike state induced by shearing: While the first is primarily elastic, the second is predominantly viscous. The point that characterizes this transition is usually known as the yield point, which is associated to critical quantities such as yield stress and/or yield strain. Another characteristic of elastoviscoplastic materials is the transition from linear to nonlinear viscoelasticity. In the current work, a commercial hair gel, which is an elastoviscoplastic material, was tested in two rotational rheometers in order to evaluate these two transition points. Stress oscillatory amplitude sweeps at different frequencies were performed and a Fourier-Transform analysis was applied to the results in order to determine the linear viscoelastic limit. The linear viscoelastic limit stresses and strains at different frequencies were then compared to quantities that are usually associated to the yield point: The extrapolated zero-shear-rate stress obtained from the equilibrium flow curve, the minimum stress required to start up flows in creep experiments, the stress overshoot reached in constant shear rate experiments and the G′-and-G″ crossover stress determined through oscillatory amplitude sweeps. The results showed that the stresses and strains obtained as the linear viscoelastic limits were smaller than the critical quantities associated to the yield point for all evaluated cases. Although the critical quantities depend on the experimental condition, the linear viscoelastic limit strain was remarkably constant. Additionally, the linear viscoelastic limit strain was found to be in the same order of magnitude of the strain that characterizes the onset of plastic behavior in recovery experiments. This suggests that the beginning of the transition from a completely structured state of elastoviscoplastic materials to an unstructured state might be associated to the threshold of nonlinear viscoelasticity.

1.
Barnes
,
H. A.
,
J. F.
Hutton
, and
K.
Walters
,
An Introduction to Rheology
, 1st ed. (
Elsevier
,
Amsterdam
,
1989
).
2.
Almdal
,
K.
,
J.
Dyre
,
S.
Hvidt
, and
O.
Kramer
, “
Towards a phenomenological definition of the term ‘gel’
,”
Polym. Gels Networks.
1
,
5
17
(
1993
).
3.
Bonn
,
D.
,
H.
Kellay
,
H.
Tanaka
,
G.
Wegdam
, and
J.
Meunier
, “
Laponite: What is the difference between a gel and a glass?
,”
Langmuir
15
,
7534
7536
(
1999
).
4.
Nishinari
,
K.
,
Gels: Structures, Properties, and Functions
, 1st ed. (
Springer
,
Heidelberg
,
2009
).
5.
Bonn
,
D.
,
J.
Paredes
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,” e-print arXiv:1502.05281 [cond-soft].
6.
Fernandes
,
R. R.
,
D. E. V.
Andrade
,
A. T.
Franco
, and
C. O. R.
Negrão
, “
Correlation between the gel-liquid transition stress and the storage modulus of an oil-based drilling fluid
,”
J. Non-Newtonian Fluid Mech.
231
,
6
10
(
2016
).
7.
Hou
,
L.
, “
Experimental study on yield behavior of Daqing crude oil
,”
Rheol. Acta.
51
,
603
607
(
2012
).
8.
Seth
,
B. R.
, “
Rheological yield condition
,”
Rheol. Acta
13
,
395
399
(
1974
).
9.
Negrão
,
C. O. R.
,
A. T.
Franco
, and
L. L. V.
Rocha
, “
A weakly compressible flow model for the restart of thixotropic drilling fluids
,”
J. Non-Newtonian Fluid Mech.
166
,
1369
1381
(
2011
).
10.
Andrade
,
D. E. V.
,
R. R.
Fernandes
,
T. G. M.
Santos
,
E. V.
Ceccon
,
A. C. B.
Cruz
,
A. T.
Franco
, and
C. O. R.
Negrão
, “
Curve-fitting equation for prediction of the start-up stress overshoot of an oil-based drilling fluid
,”
J. Pet. Sci. Eng.
146
,
902
908
(
2016
).
11.
Cheng
,
D. C.-H.
, “
Yield stress: A time-dependent property and how to measure it
,”
Rheol. Acta
25
,
542
554
(
1986
).
12.
Nguyen
,
Q. D.
, and
D. V.
Boger
, “
Measuring the flow properties of yield stress fluids
,”
Annu. Rev. Fluid Mech.
24
,
47
88
(
1992
).
13.
Coussot
,
P.
, “
Yield stress fluid flows: A review of experimental data
,”
J. Non-Newtonian Fluid Mech.
211
,
31
49
(
2014
).
14.
Malkin
,
A.
,
V.
Kulichikhin
, and
S.
Ilyin
, “
A modern look on yield stress fluids
,”
Rheol. Acta
56
(3)
177
188
(
2017
).
15.
Da Cruz
,
F.
,
F.
Chevoir
,
D.
Bonn
, and
P.
Coussot
, “
Viscosity bifurcation in granular materials, foams, and emulsions
,”
Phys. Rev. E.
66
,
51305
(
2002
).
16.
Coussot
,
P.
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Viscosity bifurcation in thixotropic, yielding fluids
,”
J. Rheol.
46
,
573
589
(
2002
).
17.
Barnes
,
H. A. A.
, and
Q. D. D.
Nguyen
, “
Rotating vane rheometry—A review
,”
J. Non-Newtonian Fluid Mech.
98
,
1
14
(
2001
).
18.
Varnik
,
F.
,
L.
Bocquet
, and
J. L.
Barrat
, “
A study of the static yield stress in a binary Lennard-Jones glass
,”
J. Chem. Phys.
120
,
2788
2801
(
2004
).
19.
Nguyen
,
Q. D.
, and
D. V.
Boger
, “
Yield stress measurement for concentrated suspensions
,”
J. Rheol.
27
,
321
349
(
1983
).
20.
Mason
,
T. G.
,
J.
Bibette
, and
D. A.
Weitz
, “
Yielding and flow of monodisperse emulsions
,”
J. Colloid Interface Sci.
179
,
439
448
(
1996
).
21.
Andrade
,
D. E. V.
,
A. C. B.
da Cruz
,
A. T.
Franco
, and
C. O. R.
Negrão
, “
Influence of the initial cooling temperature on the gelation and yield stress of waxy crude oils
,”
Rheol. Acta
54
,
149
157
(
2015
).
22.
Carrier
,
V.
, and
G.
Petekidis
, “
Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles
,”
J. Rheol.
53
,
245
273
(
2009
).
23.
James
,
A. E.
,
D. J. A.
Williams
, and
P. R.
Williams
, “
Direct measurement of static yield properties of cohesive suspensions
,”
Rheol. Acta
26
,
437
446
(
1987
).
24.
Husband
,
D. M.
,
N.
Aksel
, and
W.
Gleissle
, “
The existence of static yield stresses in suspensions containing noncolloidal particles
,”
J. Rheol.
37
,
215
235
(
1993
).
25.
Liddel
,
P. V.
, and
D. V.
Boger
, “
Yield stress measurements with the vane
,”
J. Non-Newtonian Fluid Mech.
63
,
235
261
(
1996
).
26.
Souza Mendes
,
P. R.
,
R. L.
Thompson
,
A. A.
Alicke
, and
R. T.
Leite
, “
The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter
,”
J. Rheol.
58
,
537
561
(
2014
).
27.
Dinkgreve
,
M.
,
J.
Paredes
,
M. M.
Denn
, and
D.
Bonn
, “
On different ways of measuring ‘the’ yield stress
,”
J. Non-Newtonian Fluid Mech.
238
,
233
241
(
2016
).
28.
Mujumdar
,
A.
,
A. N.
Beris
, and
A. B.
Metzner
, “
Transient phenomena in thixotropic systems
,”
J. Non-Newtonian Fluid Mech.
102
,
157
178
(
2002
).
29.
Balmforth
,
N. J.
,
I. A.
Frigaard
, and
G.
Ovarlez
, “
Yielding to stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2014
).
30.
Derec
,
C.
,
G.
Ducouret
,
A.
Ajdari
, and
F.
Lequeux
, “
Aging and nonlinear rheology in suspensions of polyethylene oxide–protected silica particles
,”
Phys. Rev. E.
67
,
061403
(
2003
).
31.
Divoux
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids
,”
Soft Matter
7
,
8409
8418
(
2011
).
32.
Ovarlez
,
G.
,
S.
Cohen-Addad
,
K.
Krishan
,
J.
Goyon
, and
P.
Coussot
, “
On the existence of a simple yield stress fluid behavior
,”
J. Non-Newtonian Fluid Mech.
193
,
68
79
(
2013
).
33.
Boujlel
,
J.
, and
P.
Coussot
, “
Measuring yield stress: A new, practical, and precise technique derived from detailed penetrometry analysis
,”
Rheol. Acta
51
,
867
882
(
2012
).
34.
Piau
,
J. M.
, “
Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges. Meso- and macroscopic properties, constitutive equations and scaling laws
,”
J. Non-Newtonian Fluid Mech.
144
,
1
29
(
2007
).
35.
Ewoldt
,
R. H.
,
P.
Winter
,
J.
Maxey
, and
G. H.
McKinley
, “
Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
,”
Rheol. Acta
49
,
191
212
(
2010
).
36.
Saramito
,
P.
, “
A new elastoviscoplastic model based on the Herschel-Bulkley viscoplastic model
,”
J. Non-Newtonian Fluid Mech.
158
,
154
161
(
2009
).
37.
Souza Mendes
,
P. R.
, “
Thixotropic elasto-viscoplastic model for structured fluids
,”
Soft Matter
7
,
2471
2483
(
2011
).
38.
Souza Mendes
,
P. R.
, and
R. L.
Thompson
, “
A critical overview of elasto-viscoplastic thixotropic modeling
,”
J. Non-Newtonian Fluid Mech.
187–188
,
8
15
(
2012
).
39.
Fraggedakis
,
D.
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Yielding the yield-stress analysis: A study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids
,”
Soft Matter
12
,
5378
5401
(
2016
).
40.
Møller
,
P. C. F.
,
A.
Fall
,
V.
Chikkadi
,
D.
Derks
, and
D.
Bonn
, “
An attempt to categorize yield stress fluid behaviour
,”
Philos. Trans. A. Math. Phys. Eng. Sci.
367
,
5139
5155
(
2009
).
41.
Lubliner
,
J.
, and
B.
Moran
, “
Plasticity theory
,”
J. Appl. Mech.
59
(1),
245
246
(
1992
).
42.
Chang
,
C.
,
D. V.
Boger
, and
Q. D.
Nguyen
, “
The yielding of waxy crude oils
,”
Ind. Eng. Chem. Res.
37
(4),
1551
1559
(
1998
).
43.
Uhlherr
,
P. H. T.
,
J.
Guo
,
C.
Tiu
,
X. M.
Zhang
,
J. Z. Q.
Zhou
, and
T. N.
Fang
, “
The shear-induced solid-liquid transition in yield stress materials with chemically different structures
,”
J. Non-Newtonian Fluid Mech.
125
,
101
119
(
2005
).
44.
Putz
,
A. M. V.
, and
T. I.
Burghelea
, “
The solid-fluid transition in a yield stress shear thinning physical gel
,”
Rheol. Acta
48
,
673
689
(
2009
).
45.
Fraggedakis
,
D.
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Yielding the yield stress analysis: A thorough comparison of recently proposed elasto-visco-plastic (EVP) fluid models
,”
J. Non-Newtonian Fluid Mech.
238
,
170
188
(
2016
).
46.
Saramito
,
P.
, “
A new constitutive equation for elastoviscoplastic fluid flows
,”
J. Non-Newtonian Fluid Mech.
145
,
1
14
(
2007
).
47.
Park
,
Y. S.
, and
P. L.-F.
Liu
, “
Oscillatory pipe flows of a yield-stress fluid
,”
J. Fluid Mech.
658
,
211
228
(
2010
).
48.
Belblidia
,
F.
,
H. R.
Tamaddon-Jahromi
,
M. F.
Webster
, and
K.
Walters
, “
Computations with viscoplastic and viscoelastoplastic fluids
,”
Rheol. Acta.
50
,
343
360
(
2011
).
49.
Dimitriou
,
C. J.
, and
G. H.
McKinley
, “
A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid
,”
Soft Matter
10
,
6619
6644
(
2014
).
50.
Geri
,
M.
,
R.
Venkatesan
,
K.
Sambath
, and
G. H.
McKinley
, “
Thermokinematic memory and the thixotropic elasto-viscoplasticity of waxy crude oils
,”
J. Rheol.
61
,
427
454
(
2017
).
51.
Dequidt
,
A.
,
L.
Conca
,
J.-Y.
Delannoy
,
P.
Sotta
,
F.
Lequeux
, and
D. R.
Long
, “
Heterogeneous dynamics and polymer plasticity
,”
Macromolecules
49
,
9148
9162
(
2016
).
52.
Lin
,
J.
,
E.
Lerner
,
A.
Rosso
, and
M.
Wyart
, “
Scaling description of the yielding transition in soft amorphous solids at zero temperature
,”
Proc. Natl. Acad. Sci. USA
111
(40),
14382
14387
(
2014
).
53.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
, “
Dynamics of polymeric liquids
,” in
Fluid Mechanics
, Vol.
1
(
John Wiley & Sons
,
New York
,
1987
).
54.
Riande
,
E.
,
R.
Díaz-Calleja
,
M. G.
Prolongo
,
R. M.
Masegosa
, and
C.
Salom
,
Polymer Viscoelasticity
(
Marcel Dekker
,
New York
,
2000
).
55.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
56.
Kumar
,
A.
,
A. D.
Stickland
, and
P. J.
Scales
, “
Viscoelasticity of coagulated alumina suspensions
,”
Korea Aust. Rheol. J.
24
,
105
111
(
2012
).
57.
Boschan
,
J.
,
D.
Vagberg
,
E.
Somfai
, and
B. P.
Tighe
, “
Beyond linear elasticity: Jammed solids at finite shear strain and rate
,”
Soft Matter
12
,
5450
5460
(
2016
).
58.
Knowlton
,
E. D.
,
D. J.
Pine
, and
L.
Cipelletti
, “
A microscopic view of the yielding transition in concentrated emulsions
,”
Soft Matter
10
,
6931
6940
(
2014
).
59.
Macosko
,
C. W.
,
Rheology: Principles, Measurements, and Applications
(
Wiley - VCH
,
New York
,
1994
).
60.
Tarcha
,
B. A.
,
B. P. P.
Forte
,
E. J.
Soares
, and
R. L.
Thompson
, “
Critical quantities on the yielding process of waxy crude oils
,”
Rheol. Acta
54
,
479
499
(
2015
).
61.
Marze
,
S.
,
R. M.
Guillermic
, and
A.
Saint-Jalmes
, “
Oscillatory rheology of aqueous foams: surfactant, liquid fraction, experimental protocol and aging effects
,”
Soft Matter
5
,
1937
1946
(
2009
).
62.
Masalova
,
I.
,
A. Y.
Malkin
, and
R.
Foudazi
, “
Yield stress of emulsions and suspensions as measured in steady shearing and in oscillations
,”
Appl. Rheol.
18
,
44790
(
2008
).
63.
Walls
,
H. J.
,
S. B.
Caines
,
A. M.
Sanchez
, and
S. A.
Khan
, “
Yield stress and wall slip phenomena in colloidal silica gels
,”
J. Rheol.
47
,
847
868
(
2003
).
64.
Mohan
,
L.
,
C.
Pellet
,
M.
Cloitre
, and
R.
Bonnecaze
, “
Local mobility and microstructure in periodically sheared soft particle glasses and their connection to macroscopic rheology
,”
J. Rheol.
57
,
1023
1046
(
2013
).
65.
Keshavarz
,
B.
,
T.
Divoux
,
S.
Manneville
, and
G. H.
McKinley
, “
Nonlinear viscoelasticity and generalized failure criterion for biopolymer gels
,”
ACS Macro Lett.
6
,
663
667
(
2017
).
66.
Derec
,
C.
,
A.
Ajdari
, and
F.
Lequeux
, “
Mechanics near a jamming transition: A minimalist model
,”
Faraday Discuss.
112
,
195
207
(
1999
).
67.
Lexis
,
M.
, and
N.
Willenbacher
, “
Relating foam and interfacial rheological properties of β-lactoglobulin solutions
,”
Soft Matter
10
,
9626
9636
(
2014
).
68.
Jager-Lézer
,
N.
,
J.-F.
Tranchant
,
V.
Alard
,
C.
Vu
,
J.-L.
Grossiord
, and
P. C.
Tchoreloff
, “
Rheological analysis of highly concentrated w/o emulsions
,”
Rheol. Acta
37
,
129
138
(
1998
).
69.
Dimitriou
,
C. J.
,
G. H.
McKinley
, and
R.
Venkatesan
, “
Rheo-PIV analysis of the yielding and flow of model waxy crude oils
,”
Energy Fuels
25
,
3040
3052
(
2011
).
70.
Coussot
,
P.
,
L.
Tocquer
,
C.
Lanos
, and
G.
Ovarlez
, “
Macroscopic vs. local rheology of yield stress fluids
,”
J. Non-Newtonian Fluid Mech.
158
,
85
90
(
2009
).
71.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
,
018304
(
2013
).
72.
Møller
,
P. C. F.
,
J.
Mewis
, and
D.
Bonn
, “
Yield stress and thixotropy: On the difficulty of measuring yield stresses in practice
,”
Soft Matter
2
,
274
283
(
2006
).
73.
Møller
,
P. C. F.
,
A.
Fall
, and
D.
Bonn
, “
Origin of apparent viscosity in yield stress fluids below yielding
,”
EPL
87
,
38004
(
2009
).
74.
Divoux
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
Stress overshoot in a simple yield stress fluid: An extensive study combining rheology and velocimetry
,”
Soft Matter
7
,
9335
9349
(
2011
).
75.
Dzuy
,
N. Q.
, and
D. V.
Boger
, “
Direct yield stress measurement with the vane method
,”
J. Rheol.
29
,
335
347
(
1985
).
76.
Zhao
,
Y.
,
L.
Kumar
,
K.
Paso
,
H.
Ali
,
J.
Safieva
, and
J.
Sjöblom
, “
Gelation and breakage behavior of model wax-oil systems: Rheological properties and model development
,”
Ind. Eng. Chem. Res.
51
,
8123
8133
(
2012
).
77.
Wang
,
Y.
, and
S.-Q.
Wang
, “
Exploring stress overshoot phenomenon upon startup deformation of entangled linear polymeric liquids
,”
J. Rheol.
53
,
1389
1401
(
2009
).
78.
Koumakis
,
N.
,
M.
Laurati
,
S. U.
Egelhaaf
,
J. F.
Brady
, and
G.
Petekidis
, “
Yielding of hard-sphere glasses during start-up shear
,”
Phys. Rev. Lett.
108
,
098303
(
2012
).
79.
Mohraz
,
A.
, and
M. J.
Solomon
, “
Orientation and rupture of fractal colloidal gels during start-up of steady shear flow
,”
J. Rheol.
49
,
657
681
(
2005
).
80.
Zausch
,
J.
,
J.
Horbach
,
M.
Laurati
,
S. U.
Egelhaaf
,
J. M.
Brader
,
T.
Voigtmann
, and
M.
Fuchs
, “
From equilibrium to steady state: The transient dynamics of colloidal liquids under shear
,”
J. Phys. Condens. Matter
20
,
404210
(
2008
).
81.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
82.
Ovarlez
,
G.
,
Q.
Barral
, and
P.
Coussot
, “
Three-dimensional jamming and flows of soft glassy materials
,”
Nat. Mater.
9
,
115
119
(
2010
).
83.
Rouyer
,
F.
,
S.
Cohen-Addad
, and
R.
Höhler
, “
Is the yield stress of aqueous foam a well-defined quantity?
,”
Colloids Surf. A Physicochem. Eng. Asp.
263
,
111
116
(
2005
).
84.
Perge
,
C.
,
N.
Taberlet
,
T.
Gibaud
, and
S.
Manneville
, “
Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel
,”
J. Rheol.
58
,
1331
1357
(
2014
).
85.
Hyun
,
K.
,
E. S.
Baik
,
K. H.
Ahn
,
S. J.
Lee
,
M.
Sugimoto
, and
K.
Koyama
, “
Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts
,”
J. Rheol.
51
,
1319
1342
(
2007
).
86.
Wilhelm
,
M.
,
D.
Maring
, and
H. W.
Spiess
, “
Fourier-transform rheology
,”
Rheol. Acta
37
(4),
399
405
(
1998
).
87.
Tanner
,
R. I.
,
Engineering Rheology
(
OUP
,
Oxford
,
2000
).
88.
Dinkgreve
,
M.
,
D.
Bonn
, and
M. M.
Denn
, “
‘Everything flows?’ Elastic effects on start-up flows of yield stress fluids
,”
Rheol. Acta
56
,
189
194
(
2017
).
89.
Coussot
,
P.
,
H.
Tabuteau
,
X.
Chateau
,
L.
Tocquer
, and
G.
Ovarlez
, “
Aging and solid or liquid behavior in pastes
,”
J. Rheol.
50
,
975
994
(
2006
).
90.
Ding
,
C.
,
M.
Zhang
, and
G.
Li
, “
Rheological properties of collagen / hydroxypropyl methylcellulose (COL/HPMC) blended solutions
,”
J. Appl. Polym. Sci.
131
(7),
1
10
(
2014
).
91.
Lin
,
X.
, and
L.
Navailles
, “
Influence of phosphonium alkyl substituents on the rheological and thermal properties of phosphonium-PAA-based supramolecular polymeric assemblies
,”
Macromolecules
45
,
9500
9506
(
2012
).
92.
Ruiz Martinez
,
M. A.
,
J.
López-Viota Gallardo
,
M. M.
de Benavides
,
J.
de Dios García López-Duran
, and
V.
Gallardo Lara
, “
Rheological behavior of gels and meloxicam release
,”
Int. J. Pharm.
333
,
17
23
(
2007
).
93.
Whittle
,
M.
, and
E.
Dickinson
, “
Large deformation rheological behaviour of a model particle gel
,”
J. Chem. Soc. Faraday Trans.
94
,
2453
2462
(
1998
).
94.
Lexis
,
M.
, and
N.
Willenbacher
, “
Yield stress and elasticity of aqueous foams from protein and surfactant solutions—The role of continuous phase viscosity and interfacial properties
,”
Colloids Surf. A Physicochem. Eng. Asp.
459
,
177
185
(
2014
).
You do not currently have access to this content.