A particle-level simulation methodology is proposed to study the squeeze flow behavior of model magnetorheological fluids. The simulation algorithm takes into account Brownian motion and local field corrections to magnetic interactions of the particles. Simulation results obtained from using different initial configurations, including one single-particle-width chain per simulation box, random or lattice arrangements of preassembled single-particle-width chains as well as randomly dispersed particle suspensions, are compared with experimental data and predictions of a recently developed microscopic model. The assumption of single-particle-width chain structures in the systems has been shown to generate normal stresses larger than those found in experiments and the micromechanical model. However, much better agreement between the simulation and experimental results have been reached when using random initial configurations in the simulations.

1.
Bossis
,
G.
,
O.
Volkova
,
S.
Lacis
, and
A.
Meunier
, “
Magnetorheology: Fluids, structures and rheology
,” in
Ferrofluids
, edited by
S.
Odenbach
(
Springer
,
Bremen, Germany
,
2002
), p.
202
.
2.
de Vicente
,
J.
,
D. J.
Klingenberg
, and
R.
Hidalgo-Álvarez
, “
Magnetorheological fluids: A review
,”
Soft Matter
7
,
3701
3710
(
2011
).
3.
Wereley
,
N. M.
,
Magnetorheology: Advances and Applications
(
RCS Smart Materials
,
London
,
2013
).
4.
Havelka
,
K. O.
, and
J. W.
Pialet
, “
Electrorheological technology: The future is now
,”
Chemtech
26
(6),
36
45
(
1996
).
5.
de Vicente
,
J.
,
J. A.
Ruiz-Lopez
,
E.
Andablo-Reyes
,
J. P.
Segovia-Gutierrez
, and
R.
Hidalgo-Alvarez
, “
Squeeze flow magnetorheology
,”
J. Rheol.
55
(
4
),
753
779
(
2011
).
6.
Galindo-Rosales
,
F. J.
,
J. P.
Segovia-Gutierrez
,
F. T.
Pinho
,
M. A.
Alves
, and
J.
de Vicente
, “
Extensional rheometry of magnetic dispersions
,”
J. Rheol.
59
(
1
),
193
209
(
2015
).
7.
Ruiz-Lopez
,
J. A.
,
R.
Hidalgo-Alvarez
, and
J.
de Vicente
, “
On the validity of continuous media theory for plastic materials in magnetorheological fluids under compression
,”
Rheol. Acta
51
(
7
),
595
602
(
2012
).
8.
Guo
,
C. Y.
,
X. L.
Gong
,
S. H.
Xuan
,
L. J.
Qin
, and
Q. F.
Yan
, “
Compression behaviors of magnetorheological fluids under nonuniform magnetic field
,”
Rheol. Acta
52
(
2
),
165
176
(
2013
).
9.
Xu
,
Y.
,
T.
Liu
, and
S.
Xuan
, “
Squeeze flow behaviors of magnetorheological plastomers under constant volume
,”
J. Rheol.
58
(
3
),
659
679
(
2014
).
10.
Tang
,
X.
,
X.
Zhang
,
R.
Tao
, and
Y.
Rong
, “
Structure-enhanced yield stress of magnetorheological fluids
,”
J. Appl. Phys.
87
(
5
),
2634
2638
(
2000
).
11.
Becnel
,
A. C.
,
S. G.
Sherman
,
W.
Hu
, and
N. M.
Wereley
, “
Squeeze strengthening of magnetorheological fluids using mixed mode operation
,”
J. Appl. Phys.
117
(
17
),
17C708
(
2015
).
12.
Zhang
,
X. Z.
,
X. L.
Gong
,
P. Q.
Zhang
, and
Q. M.
Wang
, “
Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids
,”
J. Appl. Phys.
96
(
4
),
2359
2364
(
2004
).
13.
Bigue
,
J. P. L.
,
F.
Charron
, and
J.-S.
Plante
, “
Understanding the super-strong behaviour of magnetorheological fluid in simultaneous squeeze-shear with the Peclet number
,”
J. Intell. Mater. Syst. Struct.
26
(
14
),
1844
1855
(
2015
).
14.
Ruiz-Lopez
,
J. A.
,
R.
Hidalgo-Alvarez
, and
J.
de Vicente
, “
A micromechanical model for magnetorheological fluids under slow compression
,”
Rheol. Acta
55
(
3
),
245
256
(
2016
).
15.
Lukkarinen
,
A.
, and
K.
Kaski
, “
Computational studies of compressed and sheared electrorheological fluid
,”
J. Phys. D: Appl. Phys.
29
,
2729
2732
(
1996
).
16.
Lukkarinen
,
A.
, and
K.
Kaski
, “
Simulation studies of compressed and sheared electrorheological suspensions
,”
J. Appl. Phys.
83
(
3
),
1717
1725
(
1998
).
17.
Kim
,
D. H.
,
S.-H.
Chu
,
K. H.
Ahn
, and
S. J.
Lee
, “
Dynamic simulation of squeezing flow of ER fluids using parallel processing
,”
Korea-Aust. Rheol. J.
11
(
3
),
233
240
(
1999
).
18.
Ruiz-Lopez
,
J. A.
,
R.
Hidalgo-Alvarez
, and
J.
de Vicente
, “
Testing the mean magnetization approximation, dimensionless and scaling numbers in magnetorheology
,”
Soft Matter
12
(
5
),
1468
1476
(
2016
).
19.
Wang
,
Z.
,
Z. F.
Lin
, and
R. B.
Tao
, “
Many-body effect in electrorheological responses
,”
Int. J. Mod. Phys. B
10
(
10
),
1153
1166
(
1996
).
20.
Engmann
,
J.
,
C.
Servais
, and
A. S.
Burbidge
, “
Squeeze flow theory and applications to rheometry: A review
,”
J. Non-Newtonian Fluid Mech.
132
,
1
27
(
2005
).
21.
Baranyai
,
A.
, and
P. T.
Cummings
, “
Nonequilibrium molecular dynamics study of shear and shear-free flows in simple fluids
,”
J. Chem. Phys.
103
,
10217
10225
(
1995
).
22.
Ahnert
,
K.
, and
M.
Abel
, “
Numerical differentiation of experimental data: Local versus global methods
,”
Comput. Phys. Commun.
117
(
10
),
764
774
(
2007
).
23.
Segovia-Gutierrez
,
J. P.
,
C.
Berli
, and
J.
de Vicente
, “
Nonlinear viscoelasticity and two-step yielding in magnetorheology: A colloidal gel approach to understand the effect of particle concentration
,”
J. Rheol.
56
(
6
),
1429
1448
(
2012
).
24.
Fernandez-Toledano
,
J. C.
,
J.
Rodriguez-Lopez
,
K.
Shahrivar
,
R.
Hidalgo-Alvarez
,
L.
Elvira
,
F. M.
de Espinosa
, and
J.
de Vicente
, “
Two-step yielding in magnetorheology
,”
J. Rheol.
58
(
5
),
1507
1534
(
2014
).
25.
Wang
,
Z.
,
K.
Shahrivar
, and
J.
de Vicente
, “
Creep and recovery of magnetorheological fluids: Experiments and simulations
,”
J. Rheol.
58
(
6
),
1725
1750
(
2014
).
26.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
,”
J. Rheol.
58
(
6
),
1693
1724
(
2014
).
You do not currently have access to this content.