We consider shear flows that comprise of step changes in the shear rate. For these flows, we derive analytic solutions of the Rolie-Poly constitutive equation. Our method involves piecing together solutions for constant rate shear in a variety of flow rate regimes. We obtain solutions for interrupted shear, recoverable strain and nonlinear relaxation following cessation of flow. Whenever strong flow is present we neglect reptation, as other mechanisms dominate and for interrupted shear our solution is approximate as we neglect convective constraint release (CCR). Our analytic solutions provide new insight in several ways. These include revealing the mechanism of some experimental features of these flows; suggesting a method to extract the polymer contribution to the normal stress in the velocity gradient direction (σyy) from shear stress measurements alone; and a method to isolate the influence of CCR from damping function measurements. We also run complementary Graham, Likhtman and Milner, McLeish (GLaMM) model calculations to verify that insight from our analytic approach translates to this more detailed model.

1.
McLeish
,
T. C. B.
, “
Tube theory of entangled polymer dynamics
,”
Adv. Phys.
51
,
1379
1527
(
2002
).
2.
Larson
,
R. G.
, and
P. S.
Desai
, “
Modeling the rheology of polymer melts and solutions
,”
Annu. Rev. Fluid Mech.
47
,
47
65
(
2015
).
3.
Graham
,
R. S.
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
4.
Bent
,
J.
,
L. R.
Hutchings
,
R. W.
Richards
,
T.
Gough
,
R.
Spares
,
P. D.
Coates
,
I.
Grillo
,
O. G.
Harlen
,
D. J.
Read
,
R. S.
Graham
,
A. E.
Likhtman
,
D. J.
Groves
,
T. M.
Nicholson
, and
T. C. B.
McLeish
, “
Neutron-mapping polymer flow: Scattering, flow-visualisation and molecular theory
,”
Science
301
,
1691
1695
(
2003
).
5.
Collis
,
M. W.
,
A. K.
Lele
,
M. R.
Mackley
,
R. S.
Graham
,
D. J.
Groves
,
A. E.
Likhtman
,
T. M.
Nicholson
,
O. G.
Harlen
,
T. C. B.
McLeish
,
L. R.
Hutchings
,
C. M.
Fernyhough
, and
R. N.
Young
, “
Constriction flows of monodisperse linear entangled polymers: Multiscale modeling and flow visualization
,”
J. Rheol.
49
,
501
522
(
2005
).
6.
Graham
,
R. S.
,
J.
Bent
,
L. R.
Hutchings
,
R. W.
Richards
,
D. J.
Groves
,
J.
Embery
,
T. M.
Nicholson
,
T. C. B.
McLeish
,
A. E.
Likhtman
,
O. G.
Harlen
,
D. J.
Read
,
T.
Gough
,
R.
Spares
,
P. D.
Coates
, and
I.
Grillo
, “
Measuring and predicting the dynamics of linear monodisperse entangled polymers in rapid flow through an abrupt contraction. a small angle neutron scattering study
,”
Macromolecules
39
,
2700
2709
(
2006
).
7.
Valette
,
R.
,
M. R.
Mackley
, and
G. H. F. D.
Castillo
, “
Matching time dependent pressure driven flows with a rolie poly numerical simulation
,”
J. Non-Newtonian Fluid Mech.
136
,
118
125
(
2006
).
8.
McLeish
,
T. C. B.
,
N.
Clarke
,
E.
de Luca
,
L. R.
Hutchings
,
R. S.
Graham
,
T.
Gough
,
I.
Grillo
,
C. M.
Fernyhough
, and
P.
Chambon
, “
Neutron flow-mapping: Multiscale modelling opens a new experimental window
,”
Soft Matter
5
,
4426
4432
(
2009
).
9.
Liu
,
Q.
,
J.
Ouyang
,
C.
Jiang
,
X.
Zhuang
, and
W.
Li
, “
Finite volume simulations of behavior for polystyrene in a cross-slot flow based on rolie-poly model
,”
Rheol. Acta
55
,
137
154
(
2016
).
10.
Hassell
,
D. G.
,
M. R.
Mackley
,
M.
Sahin
,
H. J.
Wilson
,
O. G.
Harlen
, and
T. C. B.
McLeish
, “
Molecular physics of a polymer engineering instability: Experiments and computation
,”
Phys. Rev. E
77
,
050801
(
2008
).
11.
Reis
,
T.
, and
H.
Wilson
, “
Rolie-poly fluid flowing through constrictions: Two distinct instabilities
,”
J. Non-Newtonian Fluid Mech.
195
,
77
87
(
2013
).
12.
Adams
,
J. M.
,
S. M.
Fielding
, and
P. D.
Olmsted
, “
Transient shear banding in entangled polymers: A study using the Rolie-poly model
,”
J. Rheol.
55
,
1007
1032
(
2011
).
13.
Agimelen
,
O. S.
, and
P. D.
Olmsted
, “
Apparent fracture in polymeric fluids under step shear
,”
Phys. Rev. Lett.
110
,
204503
(
2013
).
14.
Cromer
,
M.
,
M. C.
Villet
,
G. H.
Fredrickson
, and
L. G.
Leal
, “
Shear banding in polymer solutions
,”
Phys. Fluids
25
,
051703
(
2013
).
15.
Moorcroft
,
R. L.
, and
S. M.
Fielding
, “
Shear banding in time-dependent flows of polymers and wormlike micelles
,”
J. Rheol.
58
,
103
147
(
2014
).
16.
Mohagheghi
,
M.
, and
B.
Khomami
, “
Molecular processes leading to shear banding in well entangled polymeric melts
,”
ACS Macro Lett.
4
,
684
688
(
2015
).
17.
Wang
,
S.-Q.
,
Y.
Wang
,
S.
Cheng
,
X.
Li
,
X.
Zhu
, and
H.
Sun
, “
New experiments for improved theoretical description of nonlinear rheology of entangled polymers
,”
Macromolecules
46
,
3147
3159
(
2013
).
18.
Likhtman
,
A. E.
, and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie poly equation
,”
J. Non-Newtonian Fluid Mech.
114
,
1
12
(
2003
).
19.
Likhtman
,
A. E.
, and
T. C. B.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
,
6332
6343
(
2002
).
20.
Graham
,
R. S.
,
E. P.
Henry
, and
P. D.
Olmsted
, “
Comment on ‘new experiments for improved theoretical description of nonlinear rheology of entangled polymers’
,”
Macromolecules
46
,
9849
9854
(
2013
).
21.
Blanchard
,
A.
,
R. S.
Graham
,
M.
Heinrich
,
W.
Pyckhout-Hintzen
,
D.
Richter
,
A. E.
Likhtman
,
T. C. B.
McLeish
,
D. J.
Read
,
E.
Straube
, and
J.
Kohlbrecher
, “
SANS observation of chain retraction after a large step deformation
,”
Phys. Rev. Lett.
95
,
166001
(
2005
).
22.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Do repeated shear startup runs of polymeric liquids reveal structural changes?
,”
ACS Macro Lett.
3
,
552
555
(
2014
).
23.
Wagner
,
M. H.
, and
H. M.
Laun
, “
Nonlinear shear creep and constrained elastic recovery of a LDPE melt
,”
Rheol. Acta
17
,
138
148
(
1978
).
24.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
New York
,
1999
).
25.
Einaga
,
Y.
,
K.
Osaki
, and
M.
Kurata
, “
Stress relaxation of polymer solutions under large strain
,”
Polym. J.
2
,
550
552
(
1971
).
26.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
Oxford
,
1986
).
27.
Tapadia
,
P.
, and
S. Q.
Wang
, “
Yieldlike constitutive transition in shear flow of entangled polymeric fluids
,”
Phys. Rev. Lett.
91
,
198301
(
2003
).
28.
Vermant
,
J.
,
L.
Walker
,
P.
Moldenaers
, and
J.
Mewis
, “
Orthogonal versus parallel superposition measurements
,”
J. Non-Newtonian Fluid Mech.
79
,
173
189
(
1998
).
29.
Walker
,
L. M.
,
J.
Vermant
,
P.
Moldenaers
, and
J.
Mewis
, “
Orthogonal and parallel superposition measurements on lyotropic liquid crystalline polymers
,”
Rheol. Acta
39
,
26
37
(
2000
).
30.
Larson
,
R. G.
, “
A constitutive equation for polymer melts based on partially extending strand convection
,”
J. Rheol.
28
,
545
571
(
1984
).
31.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworths
,
Boston
,
1988
).
32.
Osaki
,
K.
,
K.
Nishizawa
, and
M.
Kurata
, “
Material time constant characterizing the nonlinear viscoelasticity of entangled polymer systems
,”
Macromolecules
15
,
1068
1071
(
1982
).
33.
Furuichi
,
K.
,
C.
Nonomura
,
Y.
Masubuchi
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
, “
Primitive chain network simulations of damping functions for shear, uniaxial, biaxial and planar deformations
,”
J. Soc. Rheol., Jpn.
35
,
73
77
(
2007
).
You do not currently have access to this content.