Surfactant molecules aggregate into various micellar morphologies, depending on temperature, concentration, formulation, and flow. Micellar solutions are known to undergo shear-banding when subjected to strong shear rates, as the fluid spontaneously divides itself into bands of high and low-shear rate, both under the same applied shear stress. This phenomenon occurs because of the complex structure of micellar solutions, which undergo phase transitions upon applied flow, changing the viscosity accordingly. Here, we study shear-banding of micellar solutions in one of the simplest microfluidic geometries, a straight planar channel with rectangular cross section. Four solutions with similar zero-shear viscosity and nonlinear rheological response, but different structures are compared to investigate the flow-structure relation and its impact on shear-banding. Micellar solutions are prepared by adding different amounts of the same organic salt, sodium salicylate, to surfactant molecules with different headgroups, i.e., cetyltrimethylammonium bromide and cetylpyridinium chloride. From spatially resolved microparticle image velocimetry and flow-induced birefringence measurements, the shear rate and shear stress profiles developed on the xy-plane of a planar microchannel are obtained from a series of volumetric flow rates. Based on these profiles, in-situ rheological parameters, such as the local viscosity, are calculated by applying the stress-optical rule. The local response in a microfluidic channel is compared to the bulk rheological response in a rotational rheometer and clear correlations are found especially for the stress plateau region, the fingerprint of shear-banding. Based on the local rheological characterization of these micellar solutions, the development and growth of shear-bands is observed and quantified. The role of salt concentration and surfactant headgroup on the resulting micellar morphology is discussed, as well as its impact on the development of shear-banding.

1.
Berret
,
J. F.
,
G.
Porte
, and
J. P.
Decruppe
, “
Inhomogeneous shear flows of wormlike micelles: A master dynamic phase diagram
,”
Phys. Rev. E
55
(
2
),
1668
1676
(
1997
).
2.
Decruppe
,
J. P.
, and
A.
Ponton
, “
Flow birefringence, stress optical rule and rheology of four micellar solutions with the same low shear viscosity
,”
Eur. Phys. J. E
10
(
3
),
201
207
(
2003
).
3.
Rehage
,
H.
, and
H.
Hoffmann
, “
Viscoelastic surfactant solutions: Model systems for rheological research
,”
Mol. Phys.
74
(
5
),
933
973
(
1991
).
4.
Fischer
,
P.
, and
H.
Rehage
, “
Non–linear flow properties of viscoelastic surfactant solutions
,”
Rheol. Acta
36
(
1
),
13
27
(
1997
).
5.
Cromer
,
M.
,
L. P.
Cook
, and
G. H.
McKinley
, “
Pressure-driven flow of wormlike micellar solutions in rectilinear microchannels
,”
J. Non-Newtonian Fluid Mech.
166
(
3–4
),
180
193
(
2011
).
6.
Lerouge
,
S.
, and
J. F.
Berret
, “
Shear-induced transitions and instabilities in surfactant wormlike micelles
,”
Adv. Polym. Sci.
230
,
1
71
(
2010
).
7.
Haward
,
S. J.
,
F. J.
Galindo-Rosales
,
P.
Ballesta
, and
M. A.
Alves
, “
Spatiotemporal flow instabilities of wormlike micellar solutions in rectangular microchannels
,”
Appl. Phys. Lett.
104
(
12
),
124101
(
2014
).
8.
Lutz-Bueno
,
V.
,
J.
Kohlbrecher
, and
P.
Fischer
, “
Micellar solutions in contraction slit-flow: Alignment mapped by SANS
,”
J. Non-Newtonian Fluid Mech.
215
,
8
18
(
2015
).
9.
Fardin
,
M. A.
, and
S.
Lerouge
, “
Flows of living polymer fluids
,”
Soft Matter
10
(
44
),
8789
8799
(
2014
).
10.
Cates
,
M. E.
, “
Reptation of living polymers: Dynamics of entangled polymers in the presence of reversible chain-scission reactions
,”
Macromolecules
20
,
2289
2296
(
1987
).
11.
Keunings
,
R.
, “
Micro-macro methods for the multiscale simulation of viscoelastic flow using molecular models of kinetic theory
,”
Rheol. Rev.
2004
,
67
98
.
12.
Manneville
,
S.
, “
Recent experimental probes of shear banding
,”
Rheol. Acta
47
(
3
),
301
318
(
2008
).
13.
Cates
,
M. E.
, and
S. M.
Fielding
, “
Rheology of giant micelles
,”
Adv. Phys.
55
,
799
879
(
2006
).
14.
Vasquez
,
P. A.
,
G. H.
McKinley
, and
L. P.
Cook
, “
A network scission model for wormlike micellar solutions. I. Model formulation and viscometric flow predictions
,”
J. Non-Newtonian Fluid Mech.
144
(
2–3
),
122
139
(
2007
).
15.
Germann
,
N.
,
L. P.
Cook
, and
A. N.
Beris
, “
Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions
,”
J. Non-Newtonian Fluid Mech.
196
,
51
57
(
2013
).
16.
Berret
,
J. F.
,
D. C.
Roux
, and
P.
Lindner
, “
Structure and rheology of concentrated wormlike micelles at the shear-induced isotropic-to-nematic transition
,”
Eur. Phys. J. B
5
(
1
),
67
77
(
1998
).
17.
Schmitt
,
V.
,
C.
Marques
, and
F.
Lequeux
, “
Shear induced phase separation of complex fluids: The role of flow-concentration coupling
,”
Phys. Rev. E
52
,
4007
4009
(
1995
).
18.
Gurnon
,
A. K.
,
C.
López-Barrón
,
M. J.
Wasbrough
,
L.
Porcar
, and
N. J.
Wagner
, “
Spatially resolved concentration and segmental flow alignment in a shear-banding solution of polymer-like micelles
,”
ACS Macro Lett.
3
(
3
),
276
280
(
2014
).
19.
Sato
,
K.
,
X. F.
Yuan
, and
T.
Kawakatsu
, “
Why does shear banding behave like first-order phase transitions? Derivation of a potential from a mechanical constitutive model
,”
Eur. Phys. J. E
31
(
2
),
135
144
(
2010
).
20.
Masselon
,
C.
,
J. B.
Salmon
, and
A.
Colin
, “
Rheology of wormlike micelles in a microchannel: Evidence of nonlocal effects
,”
AIP Conf. Proc.
1027
,
186
188
(
2008
).
21.
Masselon
,
C.
,
A.
Colin
, and
P.
Olmsted
, “
Influence of boundary conditions and confinement on nonlocal effects in flows of wormlike micellar systems
,”
Phys. Rev. E
81
(
2
),
021502
(
2010
).
22.
Ober
,
T. J.
,
J.
Soulages
, and
G. H.
McKinley
, “
Spatially resolved quantitative rheo-optics of complex fluids in a microfluidic device
,”
J. Rheol.
55
(
5
),
1127
1159
(
2011
).
23.
Fuller
,
G. G.
,
Optical Rheometry of Complex Fluids
(
Oxford University
,
New York
,
1995
).
24.
Helgeson
,
M. E.
,
P. A.
Vasquez
,
E. W.
Kaler
, and
N. J.
Wagner
, “
Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition
,”
J. Rheol.
53
(
3
),
727
756
(
2009
).
25.
Pathak
,
J. A.
, and
S. D.
Hudson
, “
Rheo-optics of equilibrium polymer solutions: Wormlike micelles in elongational flow in a microfluidic cross-slot
,”
Macromolecules
39
(
25
),
8782
8792
(
2006
).
26.
Haward
,
S. J.
, and
G. H.
McKinley
, “
Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: Effects of surfactant concentration and ionic environment
,”
Phys. Rev. E
85
(
3
),
031502
(
2012
).
27.
Lutz-Bueno
,
V.
,
R.
Pasquino
,
M.
Liebi
,
J.
Kohlbrecher
, and
P.
Fischer
, “
Viscoelasticity enhancement of surfactant solutions depends on molecular conformation: Influence of surfactant headgroup structure and its counterion
,”
Langmuir
32
(
17
),
4239
4250
(
2016
).
28.
Lutz-Bueno
,
V.
,
J.
Zhao
,
R.
Mezzenga
,
T.
Pfohl
,
P.
Fischer
, and
M.
Liebi
, “
Scanning-SAXS of microfluidic flows: Nanostructural mapping of soft matter
,”
Lab Chip
16
,
4028
4035
(
2016
).
29.
Pipe
,
C. J.
,
T. S.
Majmudar
, and
G. H.
McKinley
, “
High shear rate viscometry
,”
Rheol. Acta
47
(
5–6
),
621
642
(
2008
).
30.
See supplementary material at http://dx.doi.org/10.1122/1.4985379 for detailed information on data analysis, rheological parameters, and additional FIB images.
31.
Meinhart
,
C. D.
,
S. T.
Wereley
, and
M. H. B.
Gray
, “
Volume illumination for two-dimensional particle image velocimetry
,”
Meas. Sci. Technol.
11
(
6
),
809
814
(
2000
).
32.
Lutz-Bueno
,
V.
,
M.
Liebi
,
J.
Kohlbrecher
, and
P.
Fischer
, “
Intermicellar interactions and the viscoelasticity of surfactant solutions: Complementary use of SANS and SAXS
,”
Langmuir
33
,
2617
2627
(
2017
).
33.
Lequeux
,
F.
, “
Reptation of connected worm
,”
Europhys. Lett.
19
(
8
),
675
681
(
1992
).
34.
Imae
,
T.
, “
Spinnability of viscoelastic surfactant solutions and molecular assembly formation
,” in
Structures Flow Surfactant Solution
, edited by
C. A.
Herb
and
R. K.
Prudhomme
, ACS Symposium Series (
ACS
,
Chicago
1994
), pp
140
152
.
35.
Oelschlaeger
,
C.
,
M.
Schopferer
,
F.
Scheffold
, and
N.
Willenbacher
, “
Linear-to-branched micelles transition: A rheometry and diffusing wave spectroscopy (DWS) study
,”
Langmuir
25
(
2
),
716
723
(
2009
).
36.
Sachsenheimer
,
D.
,
C.
Oelschlaeger
,
S.
Müller
,
J.
Küstner
,
S.
Bindgen
, and
N.
Willenbacher
, “
Elongational deformation of wormlike micellar solutions
,”
J. Rheol.
58
(
6
),
2017
2042
(
2014
).
37.
Granek
,
R.
, and
M. E.
Cates
, “
Stress relaxation in living polymers: Results from a Poisson renewal model
,”
J. Chem. Phys.
96
(
6
),
4758
4767
(
1992
).
38.
Parker
,
A.
, and
W.
Fieber
, “
Viscoelasticity of anionic wormlike micelles: Effects of ionic strength and small hydrophobic molecules
,”
Soft Matter
9
(
4
),
1203
1213
(
2013
).
39.
Miller
,
E.
, and
J. P.
Rothstein
, “
Transient evolution of shear-banding wormlike micellar solutions
,”
J. Non-Newtonian Fluid Mech.
143
(
1
),
22
37
(
2007
).
40.
Helgeson
,
M. E.
,
M. D.
Reichert
,
Y. T.
Hu
, and
N. J.
Wagner
, “
Relating shear banding, structure, and phase behavior in wormlike micellar solutions
,”
Soft Matter
5
(
20
),
3858
3869
(
2009
).
41.
Dealy
,
J. M.
, and
J.
Wang
,
Melt Rheology and its Applications in the Plastics Industry
(
Springer
,
Munich
,
2013
).
42.
Sharma
,
V.
, and
G. H.
McKinley
, “
An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts
,”
Rheol. Acta
51
(
6
),
487
495
(
2012
).
43.
Colin
,
A.
,
T. M.
Squires
, and
L.
Bocquet
, “
Soft matter principles of microfluidics
,”
Soft Matter
8
(
41
),
10527
10529
(
2012
).
44.
Masselon
,
C.
,
J. B.
Salmon
, and
A.
Colin
, “
Nonlocal effects in flows of wormlike micellar solutions
,”
Phys. Rev. Lett.
100
(
3
),
038301
(
2008
).
45.
Nghe
,
P.
,
G.
Degré
,
P.
Tabeling
, and
A.
Ajdari
, “
High shear rheology of shear banding fluids in microchannels
,”
Appl. Phys. Lett.
93
(
20
),
204102
(
2008
).
46.
Vasudevan
,
M.
,
E.
Buse
,
H.
Krishna
,
R.
Kalyanaraman
,
A.
Shen
,
B.
Khomami
, and
R.
Sureshkumar
, “
Reversible and irreversible flow-induced phase transitions in micellar solutions
,”
AIP Conf. Proc.
1027
,
976
978
(
2008
).
47.
Vasudevan
,
M.
,
E.
Buse
,
D.
Lu
,
H.
Krishna
,
R.
Kalyanaraman
,
A.
Shen
,
B.
Khomami
, and
R.
Sureshkumar
, “
Irreversible nanogel formation in surfactant solutions by microporous flow
,”
Nat. Mater.
9
(
5
),
436
441
(
2010
).
48.
Helgeson
,
M. E.
,
L.
Porcar
,
C.
Lopez-Barron
, and
N. J.
Wagner
, “
Direct observation of flow-concentration coupling in a shear-banding fluid
,”
Phys. Rev. Lett.
105
(
8
),
084501
(
2010
).
49.
Lerouge
,
S.
,
J. P.
Decruppe
, and
J. F.
Berret
, “
Correlations between rheological and optical properties of a micellar solution under shear banding flow
,”
Langmuir
16
(
16
),
6464
6474
(
2000
).
50.
Nghe
,
P.
,
S. M.
Fielding
,
P.
Tabeling
, and
A.
Ajdari
, “
Microchannel flow of a shear-banding fluid: Enhanced confinement effect and interfacial instability
,” e-print arXiv:0909.1306v1.
51.
Liberatore
,
M.
,
F.
Nettesheim
,
N. J.
Wagner
, and
L.
Porcar
, “
Spatially resolved small-angle neutron scattering in the 1-2 plane: A study of shear-induced phase-separating wormlike micelles
,”
Phys. Rev. E
73
(
2
),
020504
(
2006
).
52.
Thareja
,
P.
,
I. H.
Hoffmann
,
M. W.
Liberatore
,
M. E.
Helgeson
,
Y. T.
Hu
,
M.
Gradzielski
, and
N. J.
Wagner
, “
Shear-induced phase separation (SIPS) with shear banding in solutions of cationic surfactant and salt
,”
J. Rheol.
55
(
6
),
1375
1397
(
2011
).

Supplementary Material

You do not currently have access to this content.