In this work, the creep-recovery behavior of immiscible poly (styrene)/poly (methyl methacrylate) blends and their pure components in the molten state were systematically investigated. A stationary plateau in the recoverable compliance of pure components is observed. Unexpectedly, for immiscible polymer blends, the recoverable compliances show different phenomena. For blends with a fine co-continuous morphology, the recoverable compliances exhibit a one-reversal phenomenon, whereas a two-reversal phenomenon is found in the blends with a sea-island morphology. Moreover, these reversal behaviors become less pronounced with decreasing temperature, increasing creep stress, increasing annealing time, or incorporation of nanoparticles. Three competitive effects, i.e., the recovery of oriented polymer matrix, the interfacial tension which drives the deformed droplets to their equilibrium shape, and the phase coarsening process, are used here to explain the different behaviors.

1.
Paul
,
D. R.
,
Polymer Blends
(New York, 1978), Vol. 1.
2.
Pan
,
Y.
,
X.
Liu
,
X.
Hao
,
Z.
Starý
, and
D. W.
Schubert
, “
Enhancing the electrical conductivity of carbon black-filled immiscible polymer blends by tuning the morphology
,”
Eur. Polym. J.
78
,
106
115
(
2016
).
3.
Martin
,
P.
,
P. J.
Carreau
,
B. D.
Favis
, and
R.
Jérôme
, “
Investigating the morphology/rheology interrelationships in immiscible polymer blends
,”
J. Rheol.
44
,
569
583
(
2000
).
4.
Zhao
,
H.
,
Z.
Cui
,
X.
Sun
,
L. S.
Turng
, and
X.
Peng
, “
Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends
,”
Ind. Eng. Chem. Res.
52
,
2569
2581
(
2013
).
5.
Pan
,
Y.
,
X.
Liu
,
X.
Hao
, and
D. W.
Schubert
, “
Conductivity and phase morphology of carbon black-filled immiscible polymer blends under creep: An experimental and theoretical study
,”
Phys. Chem. Chem. Phys.
18
,
32125
32131
(
2016
).
6.
López-Barrón
,
C. R.
, and
C. W.
Macosko
, “
Rheology of compatibilized immiscible blends with droplet-matrix and cocontinuous morphologies during coarsening
,”
J. Rheol.
58
,
1935
1953
(
2014
).
7.
Liu
,
X. Q.
,
R. H.
Li
,
R. Y.
Bao
,
W. R.
Jiang
,
W.
Yang
,
B. H.
Xie
, and
M. B.
Yang
, “
Suppression of phase coarsening in immiscible, co-continuous polymer blends under high temperature quiescent annealing
,”
Soft matter
10
,
3587
3596
(
2014
).
8.
Hedegaard
,
A, T.
,
L.
Gu
, and
C. W.
Macosko
, “
Effect of extensional viscosity on cocontinuity of immiscible polymer blends
,”
J. Rheol.
59
,
1397
1417
(
2015
).
9.
López-Barrón
,
C. R.
, and
C. W.
Macosko
, “
A new model for the coarsening of cocontinuous morphologies
,”
Soft Matter
6
,
2637
2647
(
2010
).
10.
Willemse
,
R. C.
,
E. J. J.
Ramaker
,
J.
Van Dam
, and
A. P.
De Boer
, “
Coarsening in molten quiescent polymer blends: The role of the initial morphology
,”
Polym. Eng. Sci.
39
,
1717
1725
(
1999
).
11.
Hashimoto
,
T.
,
M.
Takenaka
, and
T.
Izumitani
, “
Spontaneous pinning of domain growth during spinodal decomposition of off-critical polymer mixtures
,”
J. Chem. Phys.
97
,
679
689
(
1992
).
12.
Takenaka
,
M.
,
T.
Izumitani
, and
T.
Hasimoto
, “
Slow spinodal decomposition in binary liquid mixtures of polymers. IV. Scaled structure factor for later stage unmixing
,”
J. Chem. Phys.
92
,
4566
4575
(
1990
).
13.
Takenaka
,
M.
,
T.
Izumitani
, and
T.
Hashimoto
, “
Spontaneous pinning of domain growth during spinodal decomposition of off-critical polymer mixtures. II. Scaling analysis
,”
J. Chem. Phys.
98
,
3528
3539
(
1993
).
14.
Takeno
,
H.
, and
T.
Hashimoto
, “
Crossover of domain-growth behavior from percolation to cluster regime in phase separation of an off-critical polymer mixture
,”
J. Chem. Phys.
107
,
1634
1644
(
1997
).
15.
Takeno
,
H.
,
M.
Iwata
,
M.
Takenaka
, and
T.
Hashimoto
, “
Combined light scattering and laser scanning confocal microscopy studies of a polymer mixture involving a percolation-to-cluster transition
,”
Macromolecules
33
,
9657
9665
(
2000
).
16.
Fortelný
,
I.
, and
A.
Zivný
, “
Coalescence in molten quiescent polymer blends
,”
Polymer
36
,
4113
4118
(
1995
).
17.
Fortelný
,
I.
, and
A.
Źivný
, “
Film drainage between droplets during their coalescence in quiescent polymer blends
,”
Polymer
39
,
2669
2675
(
1998
).
18.
Yu
,
W.
,
C.
Zhou
, and
T.
Inoue
, “
A coalescence mechanism for the coarsening behavior of polymer blends during a quiescent annealing process. I. Monodispersed particle system
,”
J. Polym. Sci. Pol. Phys.
38
,
2378
2389
(
2000
).
19.
Rusu
,
D.
, and
E.
Peuvrel-Disdier
, “
In situ characterization by small angle light scattering of the shear-induced coalescence mechanisms in immiscible polymer blends
,”
J. Rheol.
43
,
1391
1409
(
1999
).
20.
Lyu
,
S.
,
F. S.
Bates
, and
C. W.
Macosko
, “
Modeling of coalescence in polymer blends
,”
AIChE J.
48
,
7
14
(
2002
).
21.
Lyu
,
S. P.
,
F. S.
Bates
, and
C. W.
Macosko
, “
Coalescence in polymer blends during shearing
,”
AIChE J.
46
,
229
238
(
2000
).
22.
Caserta
,
S.
,
M.
Simeone
, and
S.
Guido
, “
A parameter investigation of shear-induced coalescence in semidilute PIB–PDMS polymer blends: Effects of shear rate, shear stress volume fraction, and viscosity
,”
Rheol. Acta
45
,
505
512
(
2006
).
23.
Caserta
,
S.
,
M.
Simeone
, and
S.
Guido
, “
Evolution of drop size distribution of polymer blends under shear flow by optical sectioning
,”
Rheol. Acta
43
,
491
501
(
2004
).
24.
López-Barrón
,
C. R.
, and
C. W.
Macosko
, “
Rheological and morphological study of cocontinuous polymer blends during coarsening
,”
J. Rheol.
56
,
1315
1334
(
2012
).
25.
Yu
,
W.
,
W.
Zhou
, and
C.
Zhou
, “
Linear viscoelasticity of polymer blends with co-continuous morphology
,”
Polymer
51
,
2091
2098
(
2010
).
26.
Münstedt
,
H.
, “
Rheological experiments at constant stress as efficient method to characterize polymeric materials
,”
J. Rheol.
58
,
565
587
(
2014
).
27.
Triebel
,
C.
,
N.
Katsikis
,
H.
Stará
, and
H.
Münstedt
, “
Investigations on the quality of dispersion of nanofillers in poly (methyl methacrylate) composites by creep-recovery experiments
,”
J. Rheol.
54
,
407
420
(
2010
).
28.
Münstedt
,
H.
,
N.
Katsikis
, and
J.
Kaschta
, “
Rheological properties of poly(methyl methacrylate) /nanoclay composites as investigated by creep recovery in shear
,”
Macromolecules
41
,
9777
9783
(
2008
).
29.
Liu
,
X.
,
Y.
Pan
,
G.
Zheng
, and
D. W.
Schubert
, “
Rheological and electrical behavior of poly(methyl methacrylate)/carbon black composites as investigated by creep recovery in shear
,”
Compos. Sci. Technol.
128
,
1
7
(
2016
).
30.
Starkova
,
O.
,
S.
Buschhorn
,
E.
Mannov
,
K.
Schulte
, and
A.
Aniskevich
, “
Creep and recovery of epoxy/MWCNT nanocomposites
,”
Compos. Part A: Appl. Sci. Manuf.
43
,
1212
1218
(
2012
).
31.
Triebel
,
C.
, and
H.
Münstedt
, “
Temperature dependence of rheological properties of poly(methyl methacrylate) filled with silica nanoparticles
,”
Polymer
52
,
1596
1602
(
2011
).
32.
Pan
,
Y.
,
X.
Liu
,
J.
Kaschta
,
X.
Hao
,
C.
Liu
, and
D. W.
Schubert
, “
Viscoelastic and electrical behavior of poly(methyl methacrylate)/carbon black composites prior to and after annealing
,”
Polymer
113
,
34
38
(
2017
).
33.
Gramespacher
,
H.
, and
J.
Meissner
, “
Reversal of recovery direction during creep recovery of polymer blends
,”
J. Rheol.
39
,
151
160
(
1995
).
34.
Nagarkar
,
S.
, and
S. S.
Velankar
, “
Rheology and morphology of model immiscible polymer blends with monodisperse spherical particles at the interface
,”
J. Rheol.
57
,
901
926
(
2013
).
35.
Vinckier
,
I.
,
P.
Moldenaers
, and
J.
Mewis
, “
Elastic recovery of immiscible blends 1. analysis after steady state shear flow
,”
Rheol. Acta
38
,
65
72
(
1999
).
36.
Wang
,
J.
, and
S.
Velankar
, “
Strain recovery of model immiscible blends without compatibilizer
,”
Rheol. Acta
45
,
297
304
(
2006
).
37.
Liu
,
X.
,
J.
Krückel
,
G.
Zheng
, and
D. W.
Schubert
, “
Electrical conductivity behaviour of sheared poly(methyl methacrylate)/carbon black composites
,”
Compos. Sci. Technol.
100
,
99
104
(
2014
).
38.
Liu
,
X.
,
J.
Krückel
,
G.
Zheng
, and
D. W.
Schubert
, “
Mapping the electrical conductivity of PMMA/ carbon black composites prior to and after shear
,”
ACS Appl. Mater. Interfaces
5
,
8857
8860
(
2013
).
39.
Paine
,
A. J.
, “
Error estimates in the sampling from particle size distributions
,”
Part. Part. Syst. Charact.
10
,
26
32
(
1993
).
40.
See supplementary material at http://dx.doi.org/10.1122/1.4985005 for the reproducibility of creep-recovery measurements and strain vs time curves.
41.
Carriere
,
C. J.
,
G.
Biresaw
, and
R. L.
Sammler
, “
Temperature dependence of the interfacial tension of PS/PMMA, PS/PE, and PMMA/PE blends
,”
Rheol. Acta.
39
,
476
482
(
2000
).

Supplementary Material

You do not currently have access to this content.