Simultaneous measurements of stress and flow-induced chain alignment were collected on a series of bidisperse polystyrene blends during startup of uniaxial extension and after cessation of flow at 150 °C. Chain alignment was measured using a novel method that combines the use of a commercial Sentmanat extensional rheometer with time-resolved small-angle neutron scattering (SANS) measurements. The latter uses state of the art methods of neutron time stamping in the SANS detector and deconvolution protocols that yields scattering data with time resolutions of the order of seconds [M. A. Calabrese et al., Soft Matter 12, 2301–2308 (2016)]. Those measurements were used to confirm the direct correlation between strain hardening and chain stretching at strain rates corresponding to Rouse Weissenberg number 0.5. Furthermore, a linear relation between the alignment factor, , and the tensile stress, , was observed in the bidisperse blends for stress values below 65 kPa during flow startup. This result confirmed the validity of a simple stress-SANS rule (SSR), analogous to the stress-optic rule, which relates chain alignment to the extensional stress. For stresses below 65 kPa, the stress-SANS coefficient, , was found to have a value of 3.9 MPa−1. Failure of the SSR is observed at stresses greater than 65 kPa. Further confirmation of the SSR was provided by the linear relation between and during the late regime of relaxation after flow cessation, which yield values nearly identical to those obtained during flow startup.
Skip Nav Destination
Article navigation
July 2017
Research Article|
July 01 2017
Chain stretching and recoiling during startup and cessation of extensional flow of bidisperse polystyrene blends
Special Collection:
Flow-Induced Crystallization
Carlos R. López-Barrón;
Carlos R. López-Barrón
a)
ExxonMobil Chemical Company, Baytown Technology and Engineering Complex
, Baytown, Texas 77520
Search for other works by this author on:
Yiming Zeng;
Yiming Zeng
Department of Chemical Engineering and Materials Science, University of Minnesota
, Minneapolis, Minnesota 55455
Search for other works by this author on:
Jeffrey J. Richards
Jeffrey J. Richards
Center for Neutron Research, National Institute of Standards and Technology
, Gaithersburg, Maryland 20899
Search for other works by this author on:
a)
Author to whom correspondence should be addressed; electronic mail: carlos.r.lopez-barron@exxonmobil.com
J. Rheol. 61, 697–710 (2017)
Article history
Received:
December 01 2016
Accepted:
May 07 2017
Citation
Carlos R. López-Barrón, Yiming Zeng, Jeffrey J. Richards; Chain stretching and recoiling during startup and cessation of extensional flow of bidisperse polystyrene blends. J. Rheol. 1 July 2017; 61 (4): 697–710. https://doi.org/10.1122/1.4983828
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00