Simultaneous measurements of stress and flow-induced chain alignment were collected on a series of bidisperse polystyrene blends during startup of uniaxial extension and after cessation of flow at 150 °C. Chain alignment was measured using a novel method that combines the use of a commercial Sentmanat extensional rheometer with time-resolved small-angle neutron scattering (SANS) measurements. The latter uses state of the art methods of neutron time stamping in the SANS detector and deconvolution protocols that yields scattering data with time resolutions of the order of seconds [M. A. Calabrese et al., Soft Matter 12, 2301–2308 (2016)]. Those measurements were used to confirm the direct correlation between strain hardening and chain stretching at strain rates corresponding to Rouse Weissenberg number W i R > 0.5. Furthermore, a linear relation between the alignment factor, A f , and the tensile stress, σ E , was observed in the bidisperse blends for stress values below 65 kPa during flow startup. This result confirmed the validity of a simple stress-SANS rule (SSR), analogous to the stress-optic rule, which relates chain alignment to the extensional stress. For stresses below 65 kPa, the stress-SANS coefficient, C E = A f / σ E , was found to have a value of 3.9 MPa−1. Failure of the SSR is observed at stresses greater than 65 kPa. Further confirmation of the SSR was provided by the linear relation between A f and σ during the late regime of relaxation after flow cessation, which yield C E values nearly identical to those obtained during flow startup.

1.
Spitael
,
P.
, and
C. W.
Macosko
, “
Strain hardening in polypropylenes and its role in extrusion foaming
,”
Polym. Eng. Sci.
44
,
2090
2100
(
2004
).
2.
Wagner
,
M. H.
,
H.
Bastian
,
P.
Hachmann
,
J.
Meissner
,
S.
Kurzbeck
,
H.
Munstedt
, and
F.
Langouche
, “
The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows
,”
Rheol. Acta
39
,
97
109
(
2000
).
3.
Auhl
,
D.
,
P.
Chambon
,
T. C. B.
McLeish
, and
D. J.
Read
, “
Elongational flow of blends of long and short polymers: Effective stretch relaxation time
,”
Phys. Rev. Lett.
103
,
136001
(
2009
).
4.
Hengeller
,
L.
,
Q.
Huang
,
A.
Dorokhin
,
N. J.
Alvarez
,
K.
Almdal
, and
O.
Hassager
, “
Stress relaxation of bi-disperse polystyrene melts
,”
Rheol. Acta
55
,
303
314
(
2016
).
5.
Ye
,
X.
, and
T.
Sridhar
, “
Effects of the polydispersity on rheological properties of entangled polystyrene solutions
,”
Macromolecules
38
,
3442
3449
(
2005
).
6.
Sugimoto
,
M.
,
Y.
Masubuchi
,
J.
Takimoto
, and
K.
Koyama
, “
Melt rheology of polypropylene containing small amounts of high-molecular-weight chain. 2. Uniaxial and biaxial extensional flow
,”
Macromolecules
34
,
6056
6063
(
2001
).
7.
Shivokhin
,
M. E.
,
L.
Urbanczyk
,
J.
Michel
, and
C.
Bailly
, “
The influence of molecular weight distribution of industrial polystyrene on its melt extensional and ultimate properties
,”
Polym. Eng. Sci.
56
,
1012
1020
(
2016
).
8.
Liu
,
G.
,
H.
Sun
,
S.
Rangou
,
K.
Ntetsikas
,
A.
Avgeropoulos
, and
S.
Wang
, “
Studying the origin of ‘strain hardening’: Basic difference between extension and shear
,”
J. Rheol.
57
,
89
104
(
2013
).
9.
Hayes
,
C.
,
L.
Bokobza
,
F.
Boué
,
E.
Mendes
, and
L.
Monnerie
, “
Relaxation dynamics in bimodal polystyrene melts: A Fourier-transform infrared dichroism and small-angle neutron scattering study
,”
Macromolecules
29
,
5036
5041
(
1996
).
10.
Kornfield
,
J. A.
,
G. G.
Fuller
, and
D. S.
Pearson
, “
Infrared dichroism measurements of molecular relaxation in binary blend melt rheology
,”
Macromolecules
22
,
1334
1345
(
1989
).
11.
Luap
,
C.
,
C.
Muller
,
T.
Schweizer
, and
D. C.
Venerus
, “
Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution
,”
Rheol. Acta
45
,
83
91
(
2005
).
12.
Venerus
,
D. C.
,
S.
Zhu
, and
H. C.
Öttinger
, “
Stress and birefringence measurements during the uniaxial elongation of polystyrene melts
,”
J. Rheol.
43
,
795
813
(
1999
).
13.
Hassager
,
O.
,
K.
Mortensen
,
A.
Bach
,
K.
Almdal
,
H. K.
Rasmussen
, and
W.
Pyckhout-Hintzen
, “
Stress and neutron scattering measurements on linear polymer melts undergoing steady elongational flow
,”
Rheol. Acta
51
,
385
394
(
2012
).
14.
Blanchard
,
A.
,
R. S.
Graham
,
M.
Heinrich
,
W.
Pyckhout-Hintzen
,
D.
Richter
,
A. E.
Likhtman
,
T. C. B.
McLeish
,
D. J.
Read
,
E.
Straube
, and
J.
Kohlbrecher
, “
Small angle neutron scattering observation of chain retraction after a large step deformation
,”
Phys. Rev. Lett.
95
,
166001
(
2005
).
15.
Ruocco
,
N.
,
D.
Auhl
,
C.
Bailly
,
P.
Lindner
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
,
L. G.
Leal
,
N.
Hadjichristidis
, and
D.
Richter
, “
Branch point withdrawal in elongational startup flow by time-resolved small angle neutron scattering
,”
Macromolecules
49
,
4330
4339
(
2016
).
16.
Pyckhout-Hintzen
,
W.
,
A.
Wischnewski
, and
D.
Richter
, “
Mixtures of polymer architectures: Probing the structure and dynamics with neutron scattering
,”
Polymer
105
,
378
392
(
2016
).
17.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon, Oxford University
,
Oxford Oxfordshire, New York
,
1986
), p.
73
.
18.
Doi
,
M.
,
W. W.
Graessley
,
E.
Helfand
, and
D. S.
Pearson
, “
Dynamics of polymers in polydisperse melts
,”
Macromolecules
20
,
1900
1906
(
1987
).
19.
Wagner
,
M. H.
,
S.
Kheirandish
,
K.
Koyama
,
A.
Nishioka
,
A.
Minegishi
, and
T.
Takahashi
, “
Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory
,”
Rheol. Acta
44
,
235
243
(
2005
).
20.
Nielsen
,
J. K.
,
H. K.
Rasmussen
,
O.
Hassager
, and
G. H.
McKinley
, “
Elongational viscosity of monodisperse and bidisperse polystyrene melts
,”
J. Rheol.
50
,
453
476
(
2006
).
21.
Wang
,
Y.
,
P.
Boukany
,
S.
Wang
, and
X.
Wang
, “
Elastic breakup in uniaxial extension of entangled polymer melts
,”
Phys. Rev. Lett.
99
,
237801
(
2007
).
22.
Wang
,
S.
,
S.
Ravindranath
,
Y.
Wang
, and
P.
Boukany
, “
New theoretical considerations in polymer rheology: Elastic breakdown of chain entanglement network
,”
J. Chem. Phys.
127
,
064903
(
2007
).
23.
Wang
,
Y.
,
S.
Cheng
, and
S.
Wang
, “
Basic characteristics of uniaxial extension rheology: Comparing monodisperse and bidisperse polymer melts
,”
J. Rheol.
55
,
1247
1270
(
2011
).
24.
Huang
,
Q.
,
O.
Mednova
,
H. K.
Rasmussen
,
N. J.
Alvarez
,
A. L.
Skov
,
K.
Almdal
, and
O.
Hassager
, “
Concentrated polymer solutions are different from melts: Role of entanglement molecular weight
,”
Macromolecules
46
,
5026
5035
(
2013
).
25.
Yaoita
,
T.
,
T.
Isaki
,
Y.
Masubuchi
,
H.
Watanabe
,
G.
Ianniruberto
, and
G.
Marrucci
, “
Primitive chain network simulation of elongational flows of entangled linear chains: Stretch/orientation-induced reduction of monomeric friction
,”
Macromolecules
45
,
2773
2782
(
2012
).
26.
Huang
,
Q.
,
N. J.
Alvarez
,
Y.
Matsumiya
,
H. K.
Rasmussen
,
H.
Watanabe
, and
O.
Hassager
, “
Extensional rheology of entangled polystyrene solutions suggests importance of nematic interactions
,”
ACS Macro Lett.
2
,
741
744
(
2013
).
27.
Ianniruberto
,
G.
, “
Extensional flows of solutions of entangled polymers confirm reduction of friction coefficient
,”
Macromolecules
48
,
6306
6312
(
2015
).
28.
Wingstrand
,
S. L.
,
N. J.
Alvarez
,
Q.
Huang
, and
O.
Hassager
, “
Linear and nonlinear universality in the rheology of polymer melts and solutions
,”
Phys. Rev. Lett.
115
,
078302
(
2015
).
29.
Kirkensgaard
,
J. J. K.
,
L.
Hengeller
,
A.
Dorokhin
,
Q.
Huang
,
C. J.
Garvey
,
K.
Almdal
,
O.
Hassager
, and
K.
Mortensen
, “
Nematic effects and strain coupling in entangled polymer melts under strong flow
,”
Phys. Rev. E
94
,
020502
(
2016
).
30.
Sentmanat
,
M. L.
, “
Miniature universal testing platform: From extensional melt rheology to solid-state deformation behavior
,”
Rheol. Acta
43
,
657
669
(
2004
).
31.
Sentmanat
,
M.
,
B. N.
Wang
, and
G. H.
McKinley
, “
Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform
,”
J. Rheol.
49
,
585
606
(
2005
).
32.
Andrade
,
R. J.
,
P.
Harris
, and
J. M.
Maia
, “
High strain extensional rheometry of polymer melts: Revisiting and improving the Meissner design
,”
J. Rheol.
58
,
869
890
(
2014
).
33.
Münstedt
,
H.
, “
New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample
,”
J. Rheol.
23
,
421
436
(
1979
).
34.
Bach
,
A.
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Extensional viscosity for polymer melts measured in the filament stretching rheometer
,”
J. Rheol.
47
,
429
441
(
2003
).
35.
Nielsen
,
J. K.
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension
,”
J. Rheol.
52
,
885
899
(
2008
).
36.
Sridhar
,
T.
,
M.
Acharya
,
D. A.
Nguyen
, and
P. K.
Bhattacharjee
, “
On the extensional rheology of polymer melts and concentrated solutions
,”
Macromolecules
47
,
379
386
(
2014
).
37.
Huang
,
Q.
,
M.
Mangnus
,
N. J.
Alvarez
,
R.
Koopmans
, and
O.
Hassager
, “
A new look at extensional rheology of low-density polyethylene
,”
Rheol. Acta
55
,
343
350
(
2016
).
38.
McLeish
,
T. C. B.
,
J.
Allgaier
,
D. K.
Bick
,
G.
Bishko
,
P.
Biswas
,
R.
Blackwell
,
B.
Blottière
,
N.
Clarke
,
B.
Gibbs
,
D. J.
Groves
,
A.
Hakiki
,
R. K.
Heenan
,
J. M.
Johnson
,
R.
Kant
,
D. J.
Read
, and
R. N.
Young
, “
Dynamics of entangled h-polymers: Theory, rheology, and neutron-scattering
,”
Macromolecules
32
,
6734
6758
(
1999
).
39.
Heinrich
,
M.
,
W.
Pyckhout-Hintzen
,
J.
Allgaier
,
D.
Richter
,
E.
Straube
,
D. J.
Read
,
T. C. B.
McLeish
,
D. J.
Groves
,
R. J.
Blackwell
, and
A.
Wiedenmann
, “
Arm relaxation in deformed h-polymers in elongational flow by SANS
,”
Macromolecules
35
,
6650
6664
(
2002
).
40.
Heinrich
,
M.
,
W.
Pyckhout-Hintzen
,
J.
Allgaier
,
D.
Richter
,
E.
Straube
,
T. C. B.
McLeish
,
A.
Wiedenmann
,
R. J.
Blackwell
, and
D. J.
Read
, “
Small-angle neutron scattering study of the relaxation of a melt of polybutadiene h-polymers following a large step strain
,”
Macromolecules
37
,
5054
5064
(
2004
).
41.
Handge
,
U. A.
, and
W.
Schmidheiny
, “
A tool for rapid quenching of elongated polymer melts
,”
Rheol. Acta
46
,
913
919
(
2007
).
42.
Pyckhout-Hintzen
,
W.
,
J.
Allgaier
, and
D.
Richter
, “
Recent developments in polymer dynamics investigations of architecturally complex systems
,”
Eur. Polym. J.
47
,
474
485
(
2011
).
43.
Ruocco
,
N.
,
L.
Dahbi
,
P.
Driva
,
N.
Hadjichristidis
,
J.
Allgaier
,
A.
Radulescu
,
M.
Sharp
,
P.
Lindner
,
E.
Straube
,
W.
Pyckhout-Hintzen
, and
D.
Richter
, “
Microscopic relaxation processes in branched-linear polymer blends by rheo-SANS
,”
Macromolecules
46
,
9122
9133
(
2013
).
44.
Boué
,
F.
,
M.
Nierlich
,
G.
Jannink
, and
R.
Ball
, “
Polymer coil relaxation in uniaxially strained polystyrene observed by small angle neutron scattering
,”
J. Phys.
43
,
137
148
(
1982
).
45.
See supplementary material at http://dx.doi.org/10.1122/1.4983828 for complementary rheology plots (Figures S1–S3), SANS profiles (Figure S4) and Tables S1–S3.
46.
Williams
,
M. L.
,
R. F.
Landel
, and
J. D.
Ferry
, “
The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids
,”
J. Am. Chem. Soc.
77
,
3701
3707
(
1955
).
47.
Richards
,
J. J.
,
C. V. L.
Gagnon
,
J. R.
Krzywon
,
N. J.
Wagner
, and
P. D.
Butler
, “
Dielectric rheoSANS: Simultaneous interrogation of impedance, rheology and small angle neutron scattering of complex fluids
,”
J. Vis. Exp.
122
,
e55318
(
2017
).
48.
Calabrese
,
M. A.
,
N. J.
Wagner
, and
S. A.
Rogers
, “
An optimized protocol for the analysis of time-resolved elastic scattering experiments
,”
Soft Matter
12
,
2301
2308
(
2016
).
49.
Kline
,
S. R.
, “
Reduction and analysis of SANS and USANS data using IGOR Pro
,”
J. Appl. Cryst.
39
,
895
900
(
2006
).
50.
Baumgaertel
,
M.
, and
H. H.
Winter
, “
Determination of discrete relaxation and retardation time spectra from dynamic mechanical data
,”
Rheol. Acta
28
,
511
519
(
1989
).
51.
Struglinski
,
M. J.
, and
W. W.
Graessley
, “
Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 1. Experimental observations for binary mixtures of linear polybutadiene
,”
Macromolecules
18
,
2630
2643
(
1985
).
52.
Fetters
,
L. J.
,
D. J.
Lohse
,
D.
Richter
,
T. A.
Witten
, and
A.
Zirkel
, “
Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties
,”
Macromolecules
27
,
4639
4647
(
1994
).
53.
Green
,
P. F.
,
P. J.
Mills
,
C. J.
Palmstrøm
,
J. W.
Mayer
, and
E. J.
Kramer
, “
Limits of reptation in polymer melts
,”
Phys. Rev. Lett.
53
,
2145
2148
(
1984
).
54.
Park
,
S. J.
, and
R. G.
Larson
, “
Tube dilation and reptation in binary blends of monodisperse linear polymers
,”
Macromolecules
37
,
597
604
(
2004
).
55.
Milner
,
S. T.
, and
T. C. B.
McLeish
, “
Reptation and contour-length fluctuations in melts of linear polymers
,”
Phys. Rev. Lett.
81
,
725
728
(
1998
).
56.
Osaki
,
K.
,
T.
Inoue
,
T.
Uematsu
, and
Y.
Yamashita
, “
Evaluation methods of the longest Rouse relaxation time of an entangled polymer in a semidilute solution
,”
J. Polym. Sci. B
39
,
1704
1712
(
2001
).
57.
Fetters
,
L. J.
,
D. J.
Lohse
,
S. T.
Milner
, and
W. W.
Graessley
, “
Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights
,”
Macromolecules
32
,
6847
6851
(
1999
).
58.
Osaki
,
K.
,
T.
Inoue
, and
T.
Uematsu
, “
Stress overshoot of polymer solutions at high rates of shear: Semidilute polystyrene solutions with and without chain entanglement
,”
J. Polym. Sci. Part B: Polym. Phys.
38
,
3271
3276
(
2000
).
59.
Roland
,
C. M.
,
L. A.
Archer
,
P. H.
Mott
, and
J.
Sanchez-Reyes
, “
Determining Rouse relaxation times from the dynamic modulus of entangled polymers
,”
J. Rheol.
48
,
395
403
(
2004
).
60.
Ye
,
X.
,
R. G.
Larson
,
C.
Pattamaprom
, and
T.
Sridhar
, “
Extensional properties of monodisperse and bidisperse polystyrene solutions
,”
J. Rheol.
47
,
443
468
(
2003
).
61.
Balsara
,
N. P.
,
D. J.
Lohse
,
W. W.
Graessley
, and
R.
Krishnamoorti
, “
Small-angle neutron scattering by partially deuterated polymers and their blends
,”
J. Chem. Phys.
100
,
3905
3910
(
1994
).
62.
Walker
,
L. M.
, and
N. J.
Wagner
, “
SANS analysis of the molecular order in poly(γ-benzyl l-glutamate)/deuterated dimethylformamide (PBLG/d-DMF) under shear and during relaxation
,”
Macromolecules
29
,
2298
2301
(
1996
).
63.
Helgeson
,
M. E.
,
P. A.
Vasquez
,
E. W.
Kaler
, and
N. J.
Wagner
, “
Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition
,”
J. Rheol.
53
,
727
756
(
2009
).
64.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non Newtonian Fluid Mech.
11
,
69
109
(
1982
).
65.
Hiemenz
,
P. C.
, and
T.
Lodge
,
Polymer Chemistry
(
CRC
,
Boca Raton, FL
,
2007
).
66.
Abetz
,
V.
,
A.
Dardin
,
R.
Stadler
,
J.
Hellmann
,
E. T.
Samulski
, and
H. W.
Spiess
, “
Orientation of polybutadiene chains in a thermoplastic elastomer
,”
Colloid Polym. Sci.
274
,
723
731
(
1996
).
67.
Muller
,
R.
,
C.
Picot
,
Y. H.
Zang
, and
D.
Froelich
, “
Polymer chain conformation in the melt during steady elongational flow as measured by SANS. Temporary network model
,”
Macromolecules
23
,
2577
2582
(
1990
).
68.
Pearson
,
D.
,
E.
Herbolzheimer
,
N.
Grizzuti
, and
G.
Marrucci
, “
Transient behavior of entangled polymers at high shear rates
,”
J. Polym. Sci. B
29
,
1589
1597
(
1991
).
69.
McLeish
,
T. C. B.
, and
R. G.
Larson
, “
Molecular constitutive equations for a class of branched polymers: The pom-pom polymer
,”
J. Rheol.
42
,
81
110
(
1998
).
70.
Likhtman
,
A. E.
, and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolieâ poly equation
,”
J. Non Newtonian Fluid Mech.
114
,
1
12
(
2003
).
71.
Wagner
,
M. H.
,
J.
Hepperle
, and
H.
Münstedt
, “
Relating rheology and molecular structure of model branched polystyrene melts by molecular stress function theory
,”
J. Rheol.
48
,
489
503
(
2004
).
72.
Janeschitz-Kriegl
,
H.
,
Polymer Melt Rheology and Flow Birefringence
(
Springer-Verlag
,
Berlin, New York
,
1983
), p.
6
.
73.
Matsumoto
,
T.
, and
D. C.
Bogue
, “
Stress birefringence in amorphous polymers under nonisothermal conditions
,”
J. Polym. Sci. B
15
,
1663
1674
(
1977
).
74.
Muller
,
R.
, and
J. J.
Pesce
, “
Stress-optical behaviour near the Tg and melt flow-induced anisotropy in amorphous polymers
,”
Polymer
35
,
734
739
(
1994
).
75.
van Meerveld
,
J.
, “
Validity of the linear stress optical rule in mono-, bi- and polydisperse systems of entangled linear chains
,”
J. Non Newtonian Fluid Mech.
123
,
259
267
(
2004
).
76.
Muller
,
R.
, and
D.
Froelich
, “
New extensional rheometer for elongational viscosity and flow birefringence measurements: Some results on polystyrene melts
,”
Polymer
26
,
1477
1482
(
1985
).
77.
Luap
,
C.
,
M.
Karlina
,
T.
Schweizer
, and
D. C.
Venerus
, “
Limit of validity of the stress-optical rule for polystyrene melts: Influence of polydispersity
,”
J. Non Newtonian Fluid Mech.
138
,
197
203
(
2006
).
78.
López-Barrón
,
C.
,
L.
Porcar
,
A. P. R.
Eberle
, and
N. J.
Wagner
, “
Dynamics of melting and recrystallization in a polymeric micellar crystal subjected to large amplitude oscillatory shear flow
,”
Phys. Rev. Lett.
108
,
258301
(
2012
).

Supplementary Material

You do not currently have access to this content.