A stable dispersion of silica nanoparticles in a common ionic liquid [C4mim][BF4] that exhibits significant shear thickening is formulated by controlling the strength of hydrogen bonding between the nanoparticle surface and the anion of [C4mim][BF4]. Colloidal stability is demonstrated to be due to the formation of solvation layers, the properties of which are determined by scattering measurements. Time-temperature superposition measurements and the onset of yielding behavior in steady shear indicate the increase of particle-particle attraction and loss of stability of colloidal dispersions above 30 °C. Small angle neutron scattering and dynamic light scattering measurements confirm the reduction in solvation layering at elevated temperatures, leading to a transition from stable dispersion to unstable, attractive gel with increasing temperature (i.e., an inverse melting transition). It is demonstrated how controlling specific surface-anion interactions through chemical functionality can be used to formulate nanoparticle dispersions in ionic liquids with specific rheological properties.

1.
Wagner
,
N. J.
, and
J. F.
Brady
, “
Shear thickening in colloidal dispersions
,”
Phys. Today
62
(
10
),
27
32
(
2009
).
2.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University
,
New York
,
2012
).
3.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
The effects of particle size on reversible shear thickening of concentrated colloidal dispersions
,”
J. Chem. Phys.
114
,
10514
10527
(
2001
).
4.
Lee
,
Y. S.
,
E. D.
Wetzel
, and
N. J.
Wagner
, “
The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid
,”
J. Mater. Sci.
38
,
2825
2833
(
2003
).
5.
Brown
,
E.
,
N. A.
Forman
,
C. S.
Orellana
,
H.
Zhang
,
B. W.
Maynor
,
D. E.
Betts
,
J. M.
DeSimone
, and
H. M.
Jaeger
, “
Generality of shear thickening in dense suspensions
,”
Nat. Mater.
9
,
220
224
(
2010
).
6.
Franks
,
G. V.
,
Z.
Zhou
,
N. J.
Duin
, and
D. V.
Boger
, “
Effect of interparticle forces on shear thickening of oxide suspensions
,”
J. Rheol.
44
,
759
779
(
2000
).
7.
Ueno
,
K.
,
S.
Imaizumi
,
K.
Hata
, and
M.
Watanabe
, “
Colloidal interaction in ionic liquids: Effects of ionic structures and surface chemistry on rheology of silica colloidal dispersions
,”
Langmuir
25
,
825
831
(
2009
).
8.
Gao
,
J.
,
R. S.
Ndong
,
M. B.
Shiflett
, and
N. J.
Wagner
, “
Creating nanoparticle stability in ionic liquid [C4mim][BF4] by inducing solvation layering
,”
ACS Nano
9
,
3243
3253
(
2015
).
9.
Welton
,
T.
, “
Room-temperature ionic liquids. Solvents for synthesis and catalysis
,”
Chem. Rev.
99
,
2071
2084
(
1999
).
10.
Dupont
,
J.
,
R. F.
de Souza
, and
P. A.
Suarez
, “
Ionic liquid (molten salt) phase organometallic catalysis
,”
Chem. Rev.
102
,
3667
3692
(
2002
).
11.
Cwalina
,
C. D.
,
R. D.
Dombrowski
,
C. J.
McCutcheon
,
E. L.
Christiansen
, and
N. J.
Wagner
, “
MMOD puncture resistance of EVA suits with shear thickening fluid (STF)—Armortm absorber layers
,”
Procedia Eng.
103
,
97
104
(
2015
).
12.
Cwalina
,
C. D.
,
C. M.
McCutcheon
,
R. D.
Dombrowski
, and
N. J.
Wagner
, “
Engineering enhanced cut and puncture resistance into the thermal micrometeoroid garment (TMG) using shear thickening fluid (STF)—Armor absorber layers
,”
Compos. Sci. Technol.
131
,
61
66
(
2016
).
13.
Altin
,
E.
,
J.
Gradl
, and
W.
Peukert
, “
First studies on the rheological behavior of suspensions in ionic liquids
,”
Chem. Eng. Technol.
29
,
1347
1354
(
2006
).
14.
Wittmar
,
A.
,
D.
Ruiz-Abad
, and
M.
Ulbricht
, “
Dispersions of silica nanoparticles in ionic liquids investigated with advanced rheology
,”
J. Nanopart. Res.
14
,
651
(
2012
).
15.
Wittmar
,
A.
,
M.
Gajda
,
D.
Gautam
,
U.
Dörfler
,
M.
Winterer
, and
M.
Ulbricht
, “
Influence of the cation alkyl chain length of imidazolium-based room temperature ionic liquids on the dispersibility of TiO2 nanopowders
,”
J. Nanopart. Res.
15
,
1463
(
2013
).
16.
Nordstroüm
,
J.
,
L.
Aguilera
, and
A.
Matic
, “
Effect of lithium salt on the stability of dispersions of fumed silica in the ionic liquid BMImBF4
,”
Langmuir
28
,
4080
4085
(
2012
).
17.
Smith
,
J. A.
,
O.
Werzer
,
G. B.
Webber
,
G. G.
Warr
, and
R.
Atkin
, “
Surprising particle stability and rapid sedimentation rates in an ionic liquid
,”
J. Phys. Chem. Lett.
1
,
64
68
(
2010
).
18.
Ueno
,
K.
, and
M.
Watanabe
, “
From colloidal stability in ionic liquids to advanced soft materials using unique media
,”
Langmuir
27
,
9105
9115
(
2011
).
19.
Israelachvili
,
J. N.
,
Intermolecular and Surface Forces
, 3rd ed. (
Elsevier Academic, Inc.
,
San Diego
,
2011
).
20.
Baldelli
,
S.
, “
Probing electric fields at the ionic liquid−electrode interface using sum frequency generation spectroscopy and electrochemistry
,”
J. Phys. Chem. B
109
,
13049
13051
(
2005
).
21.
Feng
,
G.
,
R.
Qiao
,
J.
Huang
,
S.
Dai
,
B. G.
Sumpter
, and
V.
Meunier
, “
The importance of ion size and electrode curvature on electrical double layers in ionic liquids
,”
Phys. Chem. Chem. Phys.
13
,
1152
1161
(
2011
).
22.
Lynden-Bell
,
R. M.
,
M. G.
Del Pópolo
,
T. G. A.
Youngs
,
J.
Kohanoff
,
C. G.
Hanke
,
J. B.
Harper
, and
C. C.
Pinilla
, “
Simulations of ionic liquids, solutions, and surfaces
,”
Acc. Chem. Res.
40
,
1138
1145
(
2007
).
23.
Ueno
,
K.
,
A.
Inaba
,
M.
Kondoh
, and
M.
Watanabe
, “
Colloidal stability of bare and polymer-grafted silica nanoparticles in ionic liquids
,”
Langmuir
24
,
5253
5259
(
2008
).
24.
Hayes
,
R.
,
G. G.
Warr
, and
R.
Atkin
, “
At the interface: Solvation and designing ionic liquids
,”
Phys. Chem. Chem. Phys.
12
,
1709
1723
(
2010
).
25.
Atkin
,
R.
, and
G. G.
Warr
, “
Structure in confined room-temperature ionic liquids
,”
J. Phys. Chem. C
111
,
5162
5168
(
2007
).
26.
Ueno
,
K.
,
M.
Kasuya
,
M.
Watanabe
,
M.
Mizukami
, and
K.
Kurihara
, “
Resonance shear measurement of nanoconfined ionic liquids
,”
Phys. Chem. Chem. Phys.
12
,
4066
4071
(
2010
).
27.
Segura
,
J. J.
,
A.
Elbourne
,
E. J.
Wanless
,
G. G.
Warr
,
K.
Voïtchovsky
, and
R.
Atkin
, “
Adsorbed and near surface structure of ionic liquids at a solid interface
,”
Phys. Chem. Chem. Phys.
15
,
3320
3328
(
2013
).
28.
Perkin
,
S.
,
L.
Crowhurst
,
H.
Niedermeyer
,
T.
Welton
,
A. M.
Smith
, and
N. N.
Gosvami
, “
Self-assembly in the electrical double layer of ionic liquids
,”
Chem. Commun.
47
,
6572
6574
(
2011
).
29.
Smith
,
A. M.
,
K. R. J.
Lovelock
, and
S.
Perkin
, “
Monolayer and bilayer structures in ionic liquids and their mixtures confined to nano-films
,”
Faraday Disc.
167
,
279
292
(
2013
).
30.
Pinilla
,
C.
,
M. G.
Del Pópolo
,
R. M.
Lynden-Bell
, and
J.
Kohanoff
, “
Structure and dynamics of a confined ionic liquid. Topics of relevance to dye-sensitized solar cells
,”
J. Phys. Chem. B
109
,
17922
17927
(
2005
).
31.
Perkin
,
S.
,
T.
Albrecht
, and
J.
Klein
, “
Layering and shear properties of an ionic liquid, 1-ethyl-3-methylimidazolium ethylsulfate, confined to nano-films between mica surfaces
,”
Phys. Chem. Chem. Phys.
12
,
1243
1247
(
2010
).
32.
Guibert
,
C.
,
V.
Dupuis
,
J.
Fresnais
, and
V.
Peyre
, “
Controlling nanoparticles dispersion in ionic liquids by tuning the pH
,”
J. Colloid Interface Sci.
454
,
105
111
(
2015
).
33.
Ueno
,
K.
,
A.
Inaba
,
T.
Ueki
,
M.
Kondoh
, and
M.
Watanabe
, “
Thermosensitive, soft glassy and structural colored colloidal array in ionic liquid: Colloidal glass to gel transition
,”
Langmuir
26
,
18031
18038
(
2010
).
34.
Krishnamurthy
,
L.-N.
, and
N. J.
Wagner
, “
The influence of weak attractive forces on the microstructure and rheology of colloidal dispersions
,”
J. Rheol.
49
,
475
499
(
2005
).
35.
Krishnamurthy
,
L.-N.
,
N. J.
Wagner
, and
J.
Mewis
, “
Shear thickening in polymer stabilized colloidal dispersions
,”
J. Rheol.
49
,
1347
1360
(
2005
).
36.
Gao
,
J.
, and
N. J.
Wagner
, “
Non-ideal viscosity and excess molar volume of mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]) with water
,”
J. Mol. Liquids
223
,
678
686
(
2016
).
37.
Gurnon
,
A. K.
, and
N. J.
Wagner
, “
Microstructure and rheology relationships for shear thickening colloidal dispersions
,”
J. Fluid Mech.
769
,
242
276
(
2015
).
38.
Bergenholtz
,
J.
,
J.
Brady
, and
M.
Vicic
, “
The non-Newtonian rheology of dilute colloidal suspensions
,”
J. Fluid Mech.
456
,
239
275
(
2002
).
39.
Gao
,
J.
, and
N. J.
Wagner
, “
Water nanocluster formation in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4])–D2O mixtures
,”
Langmuir
32
,
5078
5084
(
2016
).
40.
Szilagyi
,
I.
,
T.
Szabo
,
A.
Desert
,
G.
Trefalt
,
T.
Oncsik
, and
M.
Borkovec
, “
Particle aggregation mechanisms in ionic liquids
,”
Phys. Chem. Chem. Phys.
16
,
9515
9524
(
2014
).
41.
Kline
,
S. R.
, “
Reduction and analysis of SANS and USANS data using IGOR Pro
,”
J. Appl. Crystallogr.
39
,
895
900
(
2006
).
42.
López-Barrón
,
C. R.
,
D.
Li
,
N. J.
Wagner
, and
J. L.
Caplan
, “
Triblock copolymer self-assembly in ionic liquids: Effect of PEO block length on the self-assembly of PEO–PPO–PEO in ethylammonium nitrate
,”
Macromolecules
47
,
7484
7495
(
2014
).
43.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
44.
0.01w?>
Shenoy
,
S. S.
, and
N. J.
Wagner
, “
Influence of medium viscosity and adsorbed polymer on the reversible shear thickening transition in concentrated colloidal dispersions
,”
Rheol. Acta
44
,
360
371
(
2005
).
45.
Maranzano
,
B. J.
:
N. J.
Wagner
, “
The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions
,”
J. Rheol.
45
,
1205
1222
(
2001
).
46.
Eberle
,
A. P. R.
,
N. J.
Wagner
, and
R.
Castañeda-Priego
, “
Dynamical arrest transition in nanoparticle dispersions with short-range interactions
,”
Phys. Rev. Lett.
106
,
105704
(
2011
).
47.
Wagner
,
N. J.
, and
J. W.
Bender
, “
The role of nanoscale forces in colloid dispersion rheology
,”
MRS Bull.
29
,
100
106
(
2011
).
48.
Shikata
,
T.
, and
D. S.
Pearson
, “
Viscoelastic behavior of concentrated spherical suspensions
,”
J. Rheol.
38
,
601
616
(
1994
).
49.
Meot-Ner
,
M.
, “
The ionic hydrogen bond
,”
Chem. Rev.
105
,
213
284
(
2005
).
50.
Lanning
,
O. J.
, and
P. A.
Madden
, “
Screening at a charged surface by a molten salt
,”
J. Phys. Chem. B
108
,
11069
11072
(
2004
).
51.
Menon
,
S. V. G.
,
C.
Manohar
, and
K. S.
Rao
, “
A new interpretation of the sticky hard sphere model
,”
J. Chem. Phys.
95
,
9186
9190
(
1991
).
52.
Chiew
,
Y. C.
, and
E. D.
Glandt
, “
Percolation behaviour of permeable and of adhesive spheres
,”
J. Phys. A: Math. Gen.
16
,
2599
(
1983
).
53.
Eberle
,
A. P.
,
R. N.
Castañeda-Priego
,
J. M.
Kim
, and
N. J.
Wagner
, “
Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions
,”
Langmuir
28
,
1866
1878
(
2012
).
54.
Jorgensen
,
W. L.
, and
J. D.
Madura
, “
Temperature and size dependence for Monte Carlo simulations of TIP4P water
,”
Mol. Phys.
56
,
1381
1392
(
1985
).
55.
Mizan
,
T. I.
,
P. E.
Savage
, and
R. M.
Ziff
, “
Temperature dependence of hydrogen bonding in supercritical water
,”
J. Phys. Chem.
100
,
403
408
(
1996
).
56.
Kim
,
J. M.
,
J.
Fang
,
A. P. R.
Eberle
,
R.
Castañeda-Priego
, and
N. J.
Wagner
, “
Gel transition in adhesive hard-sphere colloidal dispersions: The role of gravitational effects
,”
Phys. Rev. Lett.
110
,
208302
(
2013
).
57.
Zhou
,
F.
,
Y. M.
Liang
, and
W. M.
Liu
, “
Ionic liquid lubricants: Designed chemistry for engineering applications
,”
Chem. Soc. Rev.
38
,
2590
2599
(
2009
).
You do not currently have access to this content.