This work presents an experimental investigation on the behavior of magnetorheological (MR) fluids in squeeze mode and a theoretical analysis of its MR mechanism. Relative to the well-known large normal stress in squeeze mode, the exciting velocity-dependent characteristics and the normal stress variation tendency of MR fluids are emphasized. The characteristics of MR fluids are tested under displacement-control and force-control modes. It is shown from the tests that along with the exciting velocity, the tensile stress shows an increasing tendency before saturation, but the compressive stress exhibits a decreasing tendency. In addition, under force-control mode (10 N/s) test, after the initial elastic deformation the elastic-plastic deformation occurs instead of plastic flow. As a consequence, in order to fully understand the exciting velocity-dependent characteristics of MR fluids in squeeze mode, a new concept considering both the hydrodynamic interaction between the particles and continuous phase and the magnetic field interaction among particles is proposed and discussed. Two separate models for the hydrodynamic interaction and magnetic field interaction in valve mode are derived by applying Darcy filtration law and simplified dipole model, respectively. It is demonstrated from the simulation and discussion that MR mechanism in valve or squeeze mode is developed on the basis of the balance between the magnetic field and hydrodynamic interactions, in which the hydraulic force is the main power propelling the deformation of the chains, and meanwhile, the restoring force resulting from the deformation of the chains makes the reaction on the relative motion. As a result, a macroscopic exciting velocity-dependent characteristic of MR fluids is presented showing the damping force of MR damper.

1.
Volkova
,
O.
,
G.
Bossis
,
M.
Guyot
,
V.
Bashtovoi
, and
A.
Reks
, “
Magnetorheology of magnetic holes compared to magnetic particles
,”
J. Rheol. (1978-present)
44
(
1
),
91
104
(
2000
).
2.
Tao
,
R.
, “
Super-strong magnetorheological fluids
,”
J. Phys.: Condens. Matter
13
(
50
),
R979
R999
(
2001
).
3.
Shah
,
K.
, and
S. B.
Choi
, “
The influence of particle size on the rheological properties of plate-like iron particle based magnetorheological fluids
,”
Smart Mater. Struct.
24
(
1
),
015004
(
2015
).
4.
Kordonski
,
W.
, and
S.
Gorodkin
, “
The behavior of a magnetorheological (MR) fluid under compressive deformation
,”
J. Rheol. (1978-present)
60
(
1
),
129
139
(
2016
).
5.
Spencer
,
B. F.
,
S. J.
Dyke
,
M. K.
Sain
, and
J. D.
Carlson
, “
Phenomenological model for magnetorheological dampers
,”
J. Eng. Mech.
123
(
3
),
230
238
(
1997
).
6.
Wang
,
D. H.
, and
W. H.
Liao
, “
Magnetorheological fluid dampers: A review of parametric modelling
,”
Smart Mater. Struct.
20
(
2
),
023001
(
2011
).
7.
Bai
,
X. X.
,
W.
Hu
, and
N. M.
Wereley
, “
Magnetorheological damper utilizing an inner bypass for ground vehicle suspensions
,”
IEEE Trans. Magn.
49
(
7
),
3422
3425
(
2013
).
8.
Chen
,
P.
,
X. X.
Bai
,
L. J.
Qian
, and
S. B.
Choi
, “
A magneto-rheological fluid mount featuring squeeze mode: Analysis and testing
,”
Smart Mater. Struct.
25
(
5
),
055002
(
2016
).
9.
López-López
,
M. T.
,
L.
Rodrïguez-Arco
,
A.
Zubarev
,
P.
Kuzhir
,
L.
Iskakova
, and
F.
Gonzälez-Caballero
, “
N-like rheograms of concentrated suspensions of magnetic particles
,”
J. Rheol. (1978-present)
60
(
2
),
267
274
(
2016
).
10.
Tang
,
X.
,
X.
Zhang
,
R.
Tao
, and
Y. M.
Rong
, “
Structure-enhanced yield stress of magnetorheological fluids
,”
J. Appl. Phys.
87
(
5
),
2634
2638
(
2000
).
11.
Zhang
,
X. Z.
,
X. L.
Gong
,
P. Q.
Zhang
, and
Q. M.
Wang
, “
Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids
,”
J. Appl. Phys.
96
(
4
),
2359
2364
(
2004
).
12.
Ismail
,
I.
,
S. A.
Mazlan
,
H.
Zamzuri
, and
A. G.
Olabi
, “
Fluid-particle separation of magnetorheological fluid in squeeze mode
,”
Jpn. J. Appl. Phys.
51
(
6R
),
067301
(
2012
).
13.
Guo
,
C. Y.
,
X. L.
Gong
,
S. H.
Xuan
,
L. J.
Qin
, and
Q. F.
Yan
, “
Compression behaviors of magnetorheological fluids under nonuniform magnetic field
,”
Rheol. Acta
52
(
2
),
165
176
(
2013
).
14.
Guo
,
C. Y.
,
X. L.
Gong
,
S. H.
Xuan
,
Q. F.
Yan
, and
X. H.
Ruan
, “
Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field
,”
Smart Mater. Struct.
22
(
4
),
045020
(
2013
).
15.
Farjoud
,
A.
,
R.
Cavey
,
M.
Ahmadian
, and
M.
Craft
, “
Magneto-rheological fluid behavior in squeeze mode
,”
Smart Mater. Struct.
18
(
9
),
095001
(
2009
).
16.
Wang
,
H. Y.
,
C.
Bi
,
Z. H.
Zhang
,
J. W.
Kan
, and
C. F.
Gao
, “
An investigation of tensile behavior of magnetorheological fluids under different magnetic fields
,”
J. Intell. Mater. Syst. Struct.
24
(
5
),
541
547
(
2013
).
17.
López-López
,
M. T.
,
P.
Kuzhir
,
L.
Rodrïguez-Arco
,
J.
Caballero-Hernändez
,
J. D. G.
Durän
, and
G.
Bossis
, “
Stick-slip instabilities in the shear flow of magnetorheological suspensions
,”
J. Rheol. (1978-present)
57
(
4
),
1101
1119
(
2013
).
18.
Vieira
,
S. L.
,
C.
Ciocanel
,
P.
Kulkarni
,
A.
Agrawal
, and
N.
Naganathan
, “
Behaviour of MR fluids in squeeze mode
,”
Int. J. Veh. Des.
33
(
1–3
),
36
49
(
2003
).
19.
Jolly
,
M. R.
, and
J. D.
Carlson
, “
Controllable squeeze film damping using magnetorheological fluid
,” in
Fifth International Conference on New Actuators
, Bremen, Germany (
1996
), pp.
26
28
.
20.
Zhang
,
X. J.
,
A.
Farjoud
,
M.
Ahmadian
,
K. H.
Guo
, and
M.
Craft
, “
Dynamic testing and modeling of an MR squeeze mount
,”
J. Intell. Mater. Syst. Struct.
20
(
15
),
1717
1728
(
2011
).
21.
Chen
,
P.
,
X. X.
Bai
, and
L. J.
Qian
, “
Magnetorheological fluid behavior in high-frequency oscillatory squeeze mode: Experimental tests and modelling
,”
J. Appl. Phys.
119
(
10
),
105101
(
2016
).
22.
Phillips
,
R. W.
, “
Engineering applications of fluids with a variable yield stress
,” Ph.D. dissertation,
University of California
,
Berkeley, CA
,
1969
.
23.
Ruiz-López
,
J. A.
,
R.
Hidalgo-Alvarez
, and
J.
de Vicente
, “
On the validity of continuous media theory for plastic materials in magnetorheological fluids under slow compression
,”
Rheol. Acta
51
(
7
),
595
602
(
2012
).
24.
de Vicente
,
J.
,
J. A.
Ruiz-López
,
E.
Andablo-Reyes
,
J. P.
Segovia-Gutirrez
, and
R.
Hidalgo-Alvarez
, “
Squeeze flow magnetorheology
,”
J. Rheol. (1978-present)
55
(
4
),
753
779
(
2011
).
25.
Klingenberg
,
D. J.
, and
C. F.
Zukoski
 IV
, “
Studies on the steady-shear behavior of electrorheological suspensions
,”
Langmuir
6
(
1
),
15
24
(
1990
).
26.
Bossis
,
G.
, and
E.
Lemaire
, “
Yield stresses in magnetic suspensions
,”
J. Rheol. (1978-present)
35
(
7
),
1345
1354
(
1991
).
27.
Jolly
,
M. R.
,
J. D.
Carlson
, and
B. C.
Munoz
, “
A model of the behavior of magnetorheological materials
,”
Smart Mater. Struct.
5
(
5
),
607
614
(
1996
).
28.
Furst
,
E. M.
, and
A. P.
Gast
, “
Micromechanics of magnetorheological suspensions
,”
Phys. Rev. E
61
(
6
),
6732
6739
(
2000
).
29.
Si
,
H.
,
X.
Peng
, and
X.
Li
, “
A micromechanical model for magnetorheological fluids
,”
J. Intell. Mater. Syst. Struct.
19
(
1
),
19
23
(
2008
).
30.
Xu
,
F. H.
,
Z. D.
Xu
,
X. C.
Zhang
,
Y. Q.
Guo
, and
Y.
Lu
, “
A compact experimentally validated model of magnetorheological fluids
,”
J. Vib. Acoust.
138
(
1
),
011017
(
2016
).
31.
Ruiz-López
,
J. A.
,
R.
Hidalgo-Alvarez
, and
J.
de Vicente
, “
A micromechanical model for magnetorheological fluids under slow compression
,”
Rheol. Acta
55
(
3
),
215
221
(
2016
).
32.
See
,
H.
, “
Field dependence of the response of a magnetorheological suspension under steady shear flow and squeezing flow
,”
Rheol. Acta
42
(
1–2
),
86
92
(
2003
).
33.
Shin
,
D. K.
, and
S. B.
Choi
, “
Design of a new adaptive fuzzy controller and its application to vibration control of a vehicle seat installed with an MR damper
,”
Smart Mater. Struct.
24
(
8
),
085012
(
2015
).
34.
Chen
,
K. K.
,
Y.
Tian
,
L.
Shan
,
X. J.
Zhang
, and
Y. G.
Meng
, “
Squeeze behaviors of magnetic powders between two parallel plates
,”
Smart Mater. Struct.
23
(
11
),
117004
(
2014
).
35.
Bruschke
,
M. V.
, and
S. G.
Advani
, “
Flow of generalized Newtonian fluids across a periodic array of cylinders
,”
J. Rheol. (1978-present)
37
(
3
),
479
498
(
1993
).
You do not currently have access to this content.