Comprehensive flow and magnetization data obtained previously on the behavior of ferrofluid based magnetorheological fluids (FF-MRF) [Susan-Resiga and Vékás, Rheol. Acta 55(7), 581–595 (2016)] were correlated using a Mason number (Mn) defined for these nano-micro composite fluids and the corresponding Casson (Ca) number, instead of the Bingham number used for conventional magnetorheological (MR) fluids. Practically, agglomerate-free, high colloidal stability ferrofluids with Newtonian behavior in the absence of a magnetic field were used as carrier to keep the off-state viscosity as low as possible and to ensure the reproducibility of the MR response of the composite fluid. The apparent viscosities and magnetization values for samples with various nanosized magnetites and micrometer range iron particle volume fractions (from 2.75% to 22.90% and from 4% to 44%, respectively) at different values of magnetic induction and shear rate collapsed on a master curve by using the nondimensional Mn and Ca numbers to correlate the measured data. By controlling the volume fraction both at nano- and microlevels, the magnetic and MR properties of the resulting composite fluids can be tailored to offer a high-performance lubricant for semiactive dampers and brakes, as well as for magnetofluidic rotating seals. The Mn and Ca numbers offer a design metric based solely on the properties of FF-MRFs and can be reliably scaled to devices of different sizes and operating conditions.

1.
Carlson
,
J. D.
, and
M. R.
Jolly
, “
Fluid, foam and elastomer devices
,”
Mechatronics
10
,
555
569
(
2000
).
2.
Park
,
B. J.
,
F. F.
Fang
, and
H. J.
Choi
, “
Magnetorheology: Materials and application
,”
Soft Matter
6
,
5246
5253
(
2010
).
3.
Zhu
,
X.
,
X.
Jing
, and
L.
Cheng
, “
Magnetorheological fluid dampers: A review on structure design and analysis
,”
J. Intell. Mater. Syst. Struct.
23
(
8
),
839
873
(
2012
).
4.
Magnetorheology: Advances and Applications
, edited by
N. M.
Wereley
(
RSC Smart Materials
,
UK
,
2014
), Vol.
6
, p.
396
.
5.
Bossis
,
G.
,
O.
Volkova
,
S.
Lacis
, and
A.
Meunier
, “
Magnetorheology: Fluids, structures and rheology
,” in
Ferrofluids: Magnetically Controllable Fluids and their Applications
, Lecture Notes in Physics, edited by
S.
Odenbach
(
Springer Berlin
,
Heidelberg
,
2002
) Vol.
594
, pp.
202
230
.
6.
de Vicente
,
J.
,
D. J.
Klingenberg
, and
R.
Hidalgo-Álvarez
, “
Magnetorheological fluids: A review
,”
Soft Matter
7
,
3701
3710
(
2011
).
7.
Popplewell
,
J.
, and
R. E.
Rosensweig
, “
Magnetorheological fluid composites
,”
J. Phys. D: Appl. Phys.
29
,
2297
2303
(
1996
).
8.
Ruiz-López
,
J. A.
,
J. C.
Fernandéz-Toledano
,
D. J.
Klingenberg
,
R.
Hidalgo-Alvarez
, and
J.
de Vicente
, “
Model magnetorheology: A direct comparative study between theories, particle-level simulations and experiments, in steady and dynamic oscillatory shear
,”
J. Rheol.
60
(
1
),
61
74
(
2016
).
9.
Sherman
,
S. G.
,
A. C.
Becnel
, and
N. M.
Wereley
, “
Relating Mason number to Bingham number in magnetorheological fluids
,”
J. Magn. Magn. Mater.
380
,
98
104
(
2015
).
10.
Klingenberg
,
D. J.
,
J. C.
Ulicny
, and
M. A.
Golden
, “
Mason numbers for magnetorheology
,”
J. Rheol.
51
(
5
),
883
893
(
2007
).
11.
Becnel
,
A. C.
,
S.
Sherman
,
W.
Hu
, and
N. M.
Wereley
, “
Nondimensional scaling of magnetorheological rotary shear mode devices using the Mason number
,”
J. Magn. Magn. Mater.
380
,
90
97
(
2015
).
12.
Susan-Resiga
,
D.
, and
L.
Vékás
, “
Ferrofluid-based magnetorheological fluids: Tuning the properties by varying the composition at two hierarchical levels
,”
Rheol. Acta
55
(
7
),
581
595
(
2016
).
13.
López-López
,
M. T.
,
J.
de Vicente
,
G.
Bossis
,
F.
González-Caballero
, and
J. D. G.
Durán
, “
Preparation of stable magnetorheological fluids based on extremely bimodal iron–magnetite suspensions
,”
J. Mater. Res.
20
(
4
),
874
881
(
2005
).
14.
López-López
,
M. T.
,
P.
Kuzhir
,
S.
Lacis
,
G.
Bossis
,
F.
González-Caballero
, and
J. D. G.
Durán
, “
Magnetorheology for suspensions of solid particles dispersed in ferrofluids
,”
J. Phys.: Condens. Matter.
18
,
S2803
S2813
(
2006
).
15.
Yang
,
Y.
,
L.
Li
, and
G.
Chen
, “
Static yield stress of ferrofluid-based magnetorheological fluids
,”
Rheol. Acta
48
,
457
466
(
2009
).
16.
Susan-Resiga
,
D.
,
D.
Bica
, and
L.
Vékás
, “
Flow behaviour of extremely bidisperse magnetizable fluids
,”
J. Magn. Magn. Mater.
322
(
20
),
3166
3172
(
2010
).
17.
Iglesias
,
G. R.
,
M. T.
López-López
,
J. D. G.
Durán
,
F.
González-Caballero
, and
A. V.
Delgado
, “
Dynamic characterization of extremely bidisperse magnetorheological fluids
,”
J. Colloid Interface Sci.
377
,
153
159
(
2012
).
18.
Vékás
,
L.
, “
Ferrofluids and magnetorheological fluids
,”
Adv. Sci. Technol.
54
,
127
136
(
2008
).
19.
Wang
,
X.
, and
F.
Gordaninejad
, “
Study of magnetorheological fluids at high shear rates
,”
Rheol. Acta
45
,
899
908
(
2006
).
20.
Susan-Resiga
,
D.
, and
L.
Vékás
, “
Yield stress and flow behavior of concentrated ferrofluid based magnetorheological fluids: The influence of composition
,”
Rheol. Acta
53
,
645
653
(
2014
).
21.
Magnet
,
C.
,
P.
Kuzhir
,
G.
Bossis
,
A.
Meunier
,
S.
Nave
,
A.
Zubarev
,
C.
Lomenech
, and
V.
Bashtovoi
, “
Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields
,”
Phys. Rev. E
89
,
032310
(
2014
).
22.
Iglesias
,
G. R.
,
L.
Fernández Ruiz-Morón
,
J. D. G.
Durán
, and
A. V.
Delgado
, “
Dynamic and wear study of an extremely bidisperse magnetorheological fluid
,”
Smart Mater. Struct.
24
(
12
)
127001
(
2015
).
23.
Wereley
,
N. M.
,
A.
Chaudhuri
,
J.-H.
Yoo
,
S.
John
,
S.
Kotha
,
A.
Suggs
,
R.
Radhakrishnan
,
B. J.
Love
, and
T. S.
Sudarshan
, “
Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale
,”
J. Intell. Mater. Syst. Struct.
17
,
393
401
(
2006
).
24.
Friedman
,
A. J.
, and
S. J.
Dyke
, “
Development and experimental validation of a new control strategy considering device dynamics for large scale MR dampers using real time hybrid simulation
,”
Report No. IISL-003
, Purdue University,
2013
.
25.
Aguilera Portillo
,
M.
,
P.
Santa Ana Lozada
,
I. A.
Figueroa
,
M. A.
Suarez
,
A. V.
Delgado
, and
G. R.
Iglesias
, “
Synergy between magnetorheological fluids and aluminum foams: Prospective alternative for seismic damping
,”
J. Intell. Mater. Syst. Struct.
27
,
872
879
(
2016
).
26.
Borbáth
,
T.
,
D.
Bica
,
I.
Potencz
,
I.
Borbáth
,
T.
Boros
, and
L.
Vékás
, “
Leakage-free rotating seal systems with magnetic nanofluids and magnetic composite fluids designed for various applications
,”
Int. J. Fluid Mach. Syst.
4
,
67
75
(
2011
).
27.
Marinica
,
O.
,
D.
Susan-Resiga
,
F.
Balanean
,
D.
Vizman
,
V.
Socoliuc
, and
L.
Vékás
, “
Nano-microcomposite magnetic fluids: Magnetic and magnetorheological evaluation for rotating seal and vibration damper applications
,”
J. Magn. Magn. Mater.
406
,
134
143
(
2016
).
28.
Borbáth
,
T.
,
I.
Borbáth
,
S.
Günther
,
O.
Marinica
,
L.
Vékás
, and
S.
Odenbach
, “
Three-dimensional microstructural investigation of high magnetization nano–micro composite fluids using x-ray microcomputed tomography
,”
Smart Mater. Struct.
23
,
055018
(
2014
).
29.
Berli
,
C. L. A.
, and
J.
de Vicente
, “
A structural viscosity model for magnetorheology
,”
Appl. Phys. Lett.
101
(
2
),
021903
(
2012
).
30.
Gabriel
,
C.
, and
H. M.
Laun
, “
Combined slit and plate–plate magnetorheometry of a magnetorheological fluid (MRF) and parameterization using the Casson model
,”
Rheol. Acta
48
,
755
768
(
2009
).
31.
Marshall
,
L.
,
C. F.
Zukoski
, and
J. W.
Goodwin
, “
Effects of electric fields on the rheology of non-aqueous concentrated suspensions
,”
J. Chem. Soc., Faraday Trans. 1
85
,
2785
2795
(
1989
).
32.
Santiago-Quinones
,
D. I.
,
K.
Raj
, and
C.
Rinaldi
, “
A comparison of the magnetorheology of two ferrofluids with different magnetic field-dependent chaining behavior
,”
Rheol. Acta
52
,
719
726
(
2013
).
33.
Pham
,
V.
, and
E.
Mitsoulis
, “
Entry and exit flows of casson fluids
,”
Can. J. Chem. Eng.
72
(
6
),
1080
1084
(
1994
).
34.
de Vicente
,
J.
, “
Magnetorheology: A review
,”
Ibero-Am. J. Rheol.
1
,
1
18
(
2013
).
35.
Ramos
,
J.
,
D. J.
Klingenberg
,
R.
Hidalgo-Alvarez
, and
J.
de Vicente
, “
Steady shear magnetorheology of inverse ferrofluids
,”
J. Rheol.
55
(
1
),
127
52
(
2011
).
36.
Volkova
,
O.
,
G.
Bossis
,
M.
Guyot
,
V.
Bashtovoi
, and
A.
Reks
, “
Magnetorheology of magnetic holes compared to magnetic particles
,”
J. Rheol.
44
,
91
104
(
2000
).
37.
Bica
,
D.
,
I.
Potencz
,
L.
Vékás
,
G.
Giula
, and
F.
Potra (Balanean)
, “
Procedure to obtain magnetic fluids for seals
,” Romanian Patent No. RO 115533:B1 (
2000
).
38.
Vékás
,
L.
,
M. V.
Avdeev
, and
D.
Bica
, “
Magnetic nanofluids: Synthesis and structure
,” in
Nanoscience in Biomedicine
, edited by
D.
Shi
(
Springer
,
2009
), Chap. 25, pp.
645
704
.
39.
Susan-Resiga
,
D.
,
V.
Socoliuc
,
T.
Boros
,
T.
Borbáth
,
O.
Marinica
,
A.
Han
, and
L.
Vékás
, “
The influence of particle clustering on the rheological properties of highly concentrated magnetic nanofluids
,”
J. Colloid Interface Sci.
373
,
110
115
(
2012
).
40.
Farr
,
R. S.
, and
R. D.
Groot
, “
Close packing density of polydisperse hard spheres
,”
J. Chem. Phys.
131
,
244104
(
2009
).
41.
Zhou
,
J. Z. Q.
,
T.
Fang
,
G.
Luo
, and
P. H. T.
Uhlherr
, “
Yield stress and maximum packing fraction of concentrated suspensions
,”
Rheol. Acta
34
,
544
561
(
1995
).
42.
Bossis
,
G.
,
E.
Lemaire
,
O.
Volkova
, and
H.
Clercx
, “
Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models
,”
J. Rheol.
41
,
687
704
(
1997
).
43.
Bonnecaze
,
R. T.
, and
J. F.
Brady
, “
Dynamic simulation of an electrorheological fluid
,”
J. Chem. Phys.
96
,
2183
2202
(
1992
).
44.
Halsey
,
T.
,
J.
Martin
, and
D.
Adolf
, “
Rheology of electrorheological fluids
,”
Phys. Rev. Lett.
68
,
1519
1523
(
1992
).
45.
Shulman
,
Z. P.
,
V. I.
Kordonskii
,
E. A.
Zaltsgendler
,
I. V.
Prokhorov
,
B. M.
Khusid
, and
S. A.
Demchuk
, “
Dynamic and physical properties of ferrosuspensions with a structure rearranged by an external magnetic field
,”
Magnetohydrodynamics
20
,
354
361
(
1984
).
46.
Gómez-Ramírez
,
A.
,
P.
Kuzhir
,
M. T.
López-López
,
G.
Bossis
,
A.
Meunier
, and
J. D. G.
Durán
, “
Steady shear flow of magnetic fiber suspensions: Theory and comparison with experiments
,”
J. Rheol.
55
,
43
67
(
2011
).
You do not currently have access to this content.