We investigate the rheological implications of partitioning and self-assembly of colloidal particles at the grain boundaries (GBs) of hexagonal (H1) liquid crystal (LC) phase as a function of particle loading, shape and phase transition kinetics. The rheology of spherical silica particles (SiO2, diameter = 140 nm)/H1 and irregular hematite particles (Fe2O3, size = 110 nm)/H1 composites is measured as the samples are cooled from an isotropic to H1 phase at 2 and 0.2 °C/min. At 2 °C/min, SiO2/H1 composites show a consistent increase in G′ as the particle loading increases from 0.5 to 7.5 wt. % while Fe2O3/H1 composites exhibit a small drop in G′ above 2.5 wt. % particle loading. On the other hand, SiO2/H1 and Fe2O3/H1 composites show a monotonic increase in G′ with particle loading at a cooling rate of 0.2 °C/min. Microscopy observations reveal that at 0.2 °C/min, both SiO2 and Fe2O3 particles aggregate at the H1 GBs. The different rheological responses of SiO2/H1 and Fe2O3/H1 composites at 2 °C/min are due to the segregation of Fe2O3 particles inside the H1 domains. We further show that the moving H1 front cannot accommodate the larger sized Fe2O3 particle aggregates during phase transition, leading to a reduction in the particle partitioning efficiency (fp) at the H1 GBs. Our results indicate that fp of particles of different shapes and sizes are determined only by the average area of the H1 domains.

1.
Bisoyi
,
H. K.
, and
S.
Kumar
, “
Liquid-crystal nanoscience: An emerging avenue of soft self-assembly
,”
Chem. Soc. Rev.
40
,
306
319
(
2011
).
2.
Lagerwall
,
J. P. F.
, and
G.
Scalia
, “
A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology
,”
Curr. Appl. Phys.
12
,
1387
1412
(
2012
).
3.
Hegmann
,
T.
,
H.
Qi
, and
V.
Marx
, “
Nanoparticles in liquid crystals: Synthesis, self-assembly, defect formation and potential applications
,”
J. Inorg. Organomet. Polym. Mater.
17
,
483
508
(
2007
).
4.
Chen
,
Y.
,
P.
Ma
, and
S.
Gui
, “
Cubic and hexagonal liquid crystals as drug delivery systems
,”
Biomed Res. Int.
2014
,
1
12
.
5.
Tschierske
,
C.
, “
Non-conventional liquid crystals-the importance of micro-segregation for self-organisation
,”
J. Mater. Chem.
8
,
1485
1508
(
1998
).
6.
Wanka
,
G.
,
H.
Hoffmann
, and
W.
Ulbricht
, “
Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions
,”
Macromolecules
27
,
4145
4159
(
1994
).
7.
Muševič
,
I.
,
M.
Škarabot
,
U.
Tkalec
,
M.
Ravnik
, and
S.
Žumer
, “
Two-dimensional nematic colloidal crystals self-assembled by topological defects
,”
Science
313
,
954
958
(
2006
).
8.
Poulin
,
P.
, “
Novel phases and colloidal assemblies in liquid crystals
,”
Curr. Opin. Colloid Interface Sci.
4
,
66
71
(
1999
).
9.
Poulin
,
P.
,
H.
Stark
,
T. C.
Lubensky
, and
D. A.
Weitz
, “
Novel colloidal interactions in anisotropic fluids
,”
Science
275
,
1770
1773
(
1997
).
10.
Zimmermann
,
N.
,
G.
Junnemann-Held
,
P.
Collings
, and
P.
Kitzerow
, “
Self-organized assemblies of colloidal particles obtained from an aligned chromonic liquid crystal dispersion
,”
Soft Matter
11
,
1547
1553
(
2015
).
11.
Fabre
,
P.
,
C.
Casagrande
,
M.
Veyssie
,
V.
Cabuil
, and
R.
Massart
, “
Ferrosmectics: A new magnetic and mesomorphic phase
,”
Phys. Rev. Lett.
64
,
539
542
(
1990
).
12.
Ramos
,
L.
,
P.
Fabre
, and
E.
Dubois
, “
Compatibility between solid particles and a lamellar phase: A crucial role of the membrane interactions
,”
J. Phys. Chem.
100
,
4533
4537
(
1996
).
13.
Quilliet
,
C.
,
V.
Ponsinet
, and
V.
Cabuil
, “
Magnetically doped hexagonal lyotropic phases
,”
J. Phys. Chem.
98
,
3566
3569
(
1994
).
14.
Ramos
,
L.
,
P.
Fabre
, and
R.
Ober
, “
Existence, stability and structure of a hexagonal phase doped with nanoparticles
,”
Eur. Phys. J. B
1
,
319
326
(
1998
).
15.
Béneut
,
K.
,
D.
Constantin
,
P.
Davidson
,
A.
Dessombz
, and
C.
Chanéac
, “
Magnetic nanorods confined in a lamellar lyotropic phase
,”
Langmuir
24
,
8205
8209
(
2008
).
16.
Douliez
,
J.-P.
, “
Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids
,”
Langmuir
26
,
11397
11400
(
2010
).
17.
Allain
,
M.
, “
Possible defect-mediated phase transition in a lyotropic liquid crystal. Electron microscopy observations
,”
Europhys. Lett.
2
,
597
602
(
1986
).
18.
Allain
,
M.
,
P.
Oswald
, and
J. M.
Di Meglio
, “
Structural defects and phase transition in a lyotropic system: Optical birefringence and order parameter measurements
,”
Mol. Cryst. Liq. Cryst. Incorporating Nonlinear Opt.
162
,
161
169
(
1988
).
19.
Oswald
,
P.
, and
M.
Allain
, “
Rheology an structural defects in a lyotropic lamellar phase
,”
J. Colloid Interface Sci.
126
,
45
53
(
1988
).
20.
Basappa
,
G.
,
Suneel
,
V.
Kumaran
,
P. R.
Nott
,
S.
Ramaswamy
,
V. M.
Naik
, and
D.
Rout
, “
Structure and rheology of the defect-gel states of pure and particle-dispersed lyotropic lamellar phases
,”
Eur. Phys. J. B
12
,
269
276
(
1999
).
21.
Sharma
,
K. P.
,
G.
Kumaraswamy
,
I.
Ly
, and
O.
Mondain-Monval
, “
Self-assembly of silica particles in a nonionic surfactant hexagonal mesophase
,”
J. Phys. Chem. B
113
,
3423
3430
(
2009
).
22.
Sharma
,
K. P.
,
A. K.
Ganai
,
S. S.
Gupta
, and
G.
Kumaraswamy
, “
Self-standing three-dimensional networks of nanoparticles with controllable morphology by dynamic templating of surfactant hexagonal domains
,”
Chem. Mater.
23
,
1448
1455
(
2011
).
23.
Vallooran
,
J. J.
,
S.
Bolisetty
, and
R.
Mezzenga
, “
Macroscopic alignment of lyotropic liquid crystals using magnetic nanoparticles
,”
Adv. Mater.
23
,
3932
3937
(
2011
).
24.
Liu
,
Q.
,
Y.
Cui
,
D.
Gardner
,
X.
Li
,
S.
He
, and
I. I.
Smalyukh
, “
Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications
,”
Nano Lett.
10
,
1347
1353
(
2010
).
25.
Sharma
,
K. P.
,
A. K.
Ganai
,
D.
Sen
,
B. L.
Prasad
, and
G.
Kumaraswamy
, “
Exclusion from hexagonal mesophase surfactant domains drives end-to-end enchainment of rod-like particles
,”
J. Phys. Chem. B
117
,
12661
12668
(
2013
).
26.
Gokhale
,
S.
,
K. H.
Nagamanasa
,
R.
Ganapathy
, and
A. K.
Sood
, “
Grain growth and grain boundary dynamics in colloidal polycrystals
,”
Soft Matter
9
,
6634
6644
(
2013
).
27.
Yoshizawa
,
K.
,
T.
Okuzono
,
T.
Koga
,
T.
Taniji
, and
J.
Yamanaka
, “
Exclusion of impurity particles during grain growth in charged colloidal crystals
,”
Langmuir
27
,
13420
13427
(
2011
).
28.
Ghofraniha
,
N.
,
E.
Tamborini
,
J.
Oberdisse
,
L.
Cipelletti
, and
L.
Ramos
, “
Grain refinement and partitioning of impurities in the grain boundaries of a colloidal polycrystal
,”
Soft Matter
8
,
6214
6219
(
2012
).
29.
Tamborini
,
E.
,
N.
Ghofraniha
,
J.
Oberdisse
,
L.
Cipelletti
, and
L.
Ramos
, “
Structure of nanoparticles embedded in micellar polycrystals
,”
Langmuir
28
,
8562
8570
(
2012
).
30.
Louhichi
,
A.
,
E.
Tamborini
,
N.
Ghofraniha
,
F.
Caton
,
D.
Roux
,
J.
Oberdisse
,
L.
Cipelletti
, and
L.
Ramos
, “
Nucleation and growth of micellar polycrystals under time-dependent volume fraction conditions
,”
Phys. Rev. E
87
,
032306
(
2013
).
31.
Louhichi
,
A.
,
E.
Tamborini
,
J.
Oberdisse
,
L.
Cipelletti
, and
L.
Ramos
, “
Viscoelasticity of colloidal polycrystals doped with impurities
,”
Phys. Rev. E
92
,
032307
(
2015
).
32.
Balazs
,
A. C.
,
T.
Emrick
, and
T. P.
Russell
, “
Nanoparticle polymer composites: Where two small worlds meet
,”
Science
314
,
1107
1110
(
2006
).
33.
Thompson
,
R. B.
,
V. V.
Ginzburg
,
M. W.
Matsen
, and
A. C.
Balazs
, “
Predicting the mesophases of copolymer-nanoparticle composites
,”
Science
292
,
2469
2472
(
2001
).
34.
Stöber
,
W.
,
A.
Fink
, and
E.
Bohn
, “
Controlled growth of monodisperse silica spheres in the micron size range
,”
J. Colloid Interface Sci.
26
,
62
69
(
1968
).
35.
See supplementary material at http://dx.doi.org/10.1122/1.4975333 for the image analysis, associated rheology data and maximum aggregate size calculations.
36.
Callister
,
W. D.
,
Material Science and Engineering an Introduction
, 7th ed. (
John Wiley and Sons
,
New York
,
2007
).
37.
Bouligand
,
Y.
, “
Defects and textures of hexagonal discotics
,”
J. Phys. France
41
,
1307
1315
(
1980
).
38.
Sallen
,
L.
,
P.
Sotta
, and
P.
Oswald
, “
Pretransitional effects near the hexagonal-micellar phase transition of the C12EO6/H2O lyotropic mixture
,”
J. Phys. Chem. B
101
,
4875
4881
(
1997
).
39.
Constantin
,
D.
,
P.
Oswald
,
M.
Imperor-Clerc
,
P.
Davidson
, and
P.
Sotta
, “
Connectivity of the hexagonal, cubic, and isotropic phases of the C12EO6/H2O lyotropic mixture investigated by tracer diffusion and x-ray scattering
,”
J. Phys. Chem. B
105
,
668
673
(
2001
).
40.
Oswald
,
P.
,
J.
Geminard
,
L.
Lejcek
, and
L.
Sallen
, “
Nonlinear analysis of stripe textures in hexagonal lyotropic mesophases
,”
J. Phys. II France
6
,
281
303
(
1996
).
41.
Prost
,
J.
, “
Point defects and lock-in faults in columnar phases
,”
Liq. Cryst.
8
,
123
130
(
1990
).
42.
Derbel
,
N.
,
K.
Raïs
,
N.
Tounsi
,
T.
Othman
,
M.
Gharbia
,
A.
Gharbi
,
H. T.
Nguyen
, and
J.
Malthête
, “
Elasticity of hexagonal liquid crystals
,”
Polym. Int.
50
,
778
783
(
2001
).
43.
Ahir
,
S.
,
P.
Petrov
, and
E.
Terentjev
, “
Rheology at the phase transition boundary: 2. Hexagonal phase of triton X100 surfactant solution
,”
Langmuir
18
,
9140
9148
(
2002
).
44.
Zapotocky
,
M.
,
L.
Ramos
,
P.
Poulin
,
T.
Lubensky
, and
D.
Weitz
, “
Particle-stabilized defect gel in cholesteric liquid crystals
,”
Science
283
,
209
212
(
1999
).
45.
Adhikari
,
R.
, “
Interactions and correlations of particulate inclusions in a columnar phase
,”
Eur. Phys. J. E
9
,
127
134
(
2002
).
46.
Kulkarni
,
S.
, and
P.
Thareja
, “
Rheology of colloidal particles in lyotropic hexagonal liquid crystals: The role of particle loading, shape, and phase transition kinetics
,”
Rheol. Acta
55
,
23
36
(
2016
).
47.
Meyers
M.
, and
K.
Chawla
,
Mechanical Behaviour of Materials
, 2nd ed. (
Cambridge University
,
Cambridge
,
2009
).
48.
Zhang
,
Z.
, and
D.
Chen
, “
Consideration of orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength
,”
Scr. Mater.
54
,
1321
1326
(
2006
).
49.
Hazzledine
,
P.
, “
Direct versus indirect dispersion hardening
,”
Scr. Mater.
26
,
57
58
(
1992
).
50.
Hazzledine
,
P.
, and
N.
Louat
, “
Direct as against indirect dispersion work hardening
,”
Philos. Mag. Lett.
70
,
129
133
(
1994
).
51.
West
,
J.
,
A.
Glushchenko
, and
G.
Liao
, “
Drag on particles in a nematic suspension by a moving nematic-isotropic interface
,”
Phys. Rev. E
66
,
012702
(
2002
).
52.
Sallen
,
L.
,
P.
Oswald
,
J.
Geminard
, and
J.
Malthete
, “
Surface tension and elasticity of hexagonal columnar mesophases
,”
J. Phys. II France
5
,
937
961
(
1995
).
53.
Shen
,
X.
,
L.
Chen
,
D.
Li
,
L.
Zhu
,
H.
Wang
,
C.
Liu
,
Y.
Wang
,
Q.
Xiong
, and
H.
Chen
, “
Assembly of colloidal nanoparticles directed by the microstructures of polycrystalline ice
,”
ACS Nano
5
,
8426
8433
(
2011
).
54.
Boucenna
,
I.
,
M. A.
Guedeau-Boudeville
,
A.
Lapp
,
P.
Colinart
,
A.
Proag
,
L.
Royon
, and
A.
Mourchid
, “
Temperature directed-assembly of coated-laponite nanoparticles in pluronic micellar solutions
,”
Soft Matter
9
,
170
176
(
2013
).

Supplementary Material

You do not currently have access to this content.