Shear thickening in a fluid occurs when the viscosity of the fluid increases with the increasing applied strain rate. When the rise in viscosity occurs by orders of magnitude, the fluid undergoes discontinuous shear thickening, which can be devastating in industrial applications. We present a particle-scale numerical technique that can simulate these phenomena. By coupling the discrete element method (DEM) and lattice Boltzmann method (LBM), we developed a micromechanical model that can simulate the interparticle stresses for particles that are immersed in a fluid. A comparison of the simulation results against the experimental results reported in the literature demonstrates the potential of the method as a research tool. The comparison included parametric studies to investigate the effects of solid fraction, particle-particle, and particle-wall contact stiffness. With a systematic variation of the wall stiffness, the DEM-LBM model demonstrates that increasing boundary stiffness directly increases the maximum shear stress of the shear thickening regime. For the case of particles settling at low stresses, the DEM-LBM model has the advantage of providing insight into detailed particle-scale interactions, which is not possible using a continuum method based on phenomenological constitutive equations. We also show that the central mechanism creating the shear thickening is the dilation of the particulate media per traditional soil mechanics principles.

1.
Barnes
,
H. A.
, “
Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids
,”
J. Rheol. (1978-present)
33
(
2
),
329
366
(
1989
).
2.
Wagner
,
N. J.
, and
J. F.
Brady
, “
Shear thickening in colloidal dispersions
,”
Phys. Today
62
(
10
),
27
32
(
2009
).
3.
Brown
,
E.
, and
H. M.
Jaeger
, “
The role of dilation and confining stresses in shear thickening of dense suspensions
,”
J. Rheol. (1978-present)
56
(
4
),
875
923
(
2012
).
4.
Fernandez
,
N.
,
R.
Mani
,
D.
Rinaldi
,
D.
Kadau
,
M.
Mosquet
,
H.
Lombois-Burger
, and
L.
Isa
, “
Microscopic mechanism for shear thickening of non-Brownian suspensions
,”
Phys. Rev. Lett.
111
(
10
),
108301
(
2013
).
5.
Seto
,
R.
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
(
21
),
218301
(
2013
).
6.
Heussinger
,
C.
, “
Shear thickening in granular suspensions: Interparticle friction and dynamically correlated clusters
,”
Phys. Rev. E
88
(
5
),
050201
(
2013
).
7.
Brown
,
E.
, and
H. M.
Jaeger
, “
Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming
,”
Rep. Prog. Phys.
77
(
4
),
046602
(
2014
).
8.
Wyart
,
M.
, and
M. E.
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
112
(
9
),
098302
(
2014
).
9.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening in Brownian suspensions by dynamic simulation
,”
Proc. Natl. Acad. Sci.
112
(
50
),
15326
15330
(
2015
).
10.
Lee
,
Y. S.
,
E. D.
Wetzel
, and
N. J.
Wagner
, “
The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid
,”
J. Mater. Sci.
38
(
13
),
2825
2833
(
2003
).
11.
Brown
,
E.
,
N. A.
Forman
,
C. S.
Orellana
,
H.
Zhang
,
B. W.
Maynor
,
D. E.
Betts
,
J. M.
DeSimone
, and
H. M.
Jaeger
, “
Generality of shear thickening in dense suspensions
,”
Nat. Mater.
9
(
3
),
220
224
(
2010
).
12.
Nazockdast
,
E.
, and
J. F.
Morris
, “
Microstructural theory and the rheology of concentrated colloidal suspensions
,”
J. Fluid Mech.
713
,
420
452
(
2012
).
13.
Jiang
,
W.
,
S.
Xuan
, and
X.
Gong
, “
The role of shear in the transition from continuous shear thickening to discontinuous shear thickening
,”
Appl. Phys. Lett.
106
(
15
),
151902
(
2015
).
14.
Peters
,
I. R.
,
S.
Majumdar
, and
H. M.
Jaeger
, “
Direct observation of dynamic shear jamming in dense suspensions
,”
Nature
532
(
7598
),
214
217
(
2016
).
15.
Brown
,
E.
, and
H. M.
Jaeger
, “
Dynamic jamming point for shear thickening suspensions
,”
Phys. Rev. Lett.
103
(
8
),
086001
(
2009
).
16.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions
,”
J. Rheol. (1978-present)
45
(
5
),
1205
1222
(
2001
).
17.
Peters
,
J. F.
,
M.
Muthuswamy
,
J.
Wibowo
, and
A.
Tordesillas
, “
Characterization of force chains in granular material
,”
Phys. Rev. E
72
(
4
),
041307
(
2005
).
18.
Tordesillas
,
A.
,
S.
Pucilowski
,
D. M.
Walker
,
J.
Peters
, and
M.
Hopkins
,
A Complex Network Analysis of Granular Fabric Evolution in Three-Dimensions
(
Melbourne University
,
Victoria
,
2011
).
19.
Cates
,
M. E.
,
J. P.
Wittmer
,
J. P.
Bouchaud
, and
P.
Claudin
, “
Jamming, force chains, and fragile matter
,”
Phys. Rev. Lett.
81
(
9
),
1841
(
1998
).
20.
Nott
,
P. R.
, and
J. F.
Brady
, “
Pressure-driven flow of suspensions: Simulation and theory
,”
J. Fluid Mech.
275
,
157
199
(
1994
).
21.
Bian
,
X.
,
S.
Litvinov
,
M.
Ellero
, and
N. J.
Wagner
, “
Hydrodynamic shear thickening of particulate suspension under confinement
,”
J. Non-Newtonian Fluid Mech.
213
,
39
49
(
2014
).
22.
Ness
,
C.
, and
J.
Sun
, “
Shear thickening regimes of dense non-Brownian suspensions
,”
Soft Matter
12
,
914
924
(
2016
).
23.
Feng
,
Y. T.
,
K.
Han
, and
D. R. J.
Owen
, “
Combined three-dimensional lattice Boltzmann method and discrete element method for modelling fluid–particle interactions with experimental assessment
,”
Int. J. Numer. Methods Eng.
81
(
2
),
229
245
(
2010
).
24.
Lominé
,
F.
,
L.
Scholtès
,
L.
Sibille
, and
P.
Poullain
, “
Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: Application to piping erosion
,”
Int. J. Numer. Anal. Methods Geomech.
37
(
6
),
577
596
(
2013
).
25.
Sun
,
W. C.
,
M. R.
Kuhn
, and
J. W.
Rudnicki
, “
A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band
,”
Acta Geotech.
8
(
5
),
465
480
(
2013
).
26.
Han
,
Y.
, and
P. A.
Cundall
, “
LBM–DEM modeling of fluid–solid interaction in porous media
,”
Int. J. Numer. Anal. Methods Geomech.
37
(
10
),
1391
1407
(
2013
).
27.
Jelinek
,
B.
,
M.
Eshraghi
,
S. D.
Felicelli
, and
J. F.
Peters
, “
Large-scale parallel lattice Boltzmann—cellular automaton model of two-dimensional dendritic growth
,”
Comput. Phys. Commun.
185
(
3
),
939
947
(
2014
).
28.
Cundall
,
P. A.
, and
O. D. L.
Strack
, “
A discrete numerical model for granular assemblies
,”
Geotechnique
29
(
1
),
47
65
(
1979
).
29.
Cole
,
D. M.
, and
J. F.
Peters
, “
Grain-scale mechanics of geologic materials and lunar simulants under normal loading
,”
Granular Matter
10
(
3
),
171
185
(
2008
).
30.
Owen
,
D. R. J.
,
C. R.
Leonardi
, and
Y. T.
Feng
, “
An efficient framework for fluid–structure interaction using the lattice Boltzmann method and immersed moving boundaries
,”
Int. J. Numer. Methods Eng.
87
(
1–5
),
66
95
(
2011
).
31.
Succi
,
S.
,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
(
Oxford University
,
Oxford, UK
,
2001
).
32.
Rothman
,
D. H.
, and
S.
Zaleski
,
Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics
(
Cambridge University
,
Cambridge, UK
,
2004
), Vol.
5
.
33.
Sukop
,
M. C.
, and
D. T.
Thorne
,
Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers
(
Springer
,
Berlin, Germany
,
2006
).
34.
Boltzmann
,
L.
, “
Weitere Studien über das Wärmegleichgewicht unter Gas-molekülen
,”
Wiss. Abh.
1
,
316
402
(
1872
).
35.
Chapman
,
S.
, and
T. G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
, Cambridge Mathematical Library (
Cambridge University
,
Cambridge/New York/Melbourne
,
1991
).
36.
Bhatnagar
,
P. L.
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
(
3
),
511
(
1954
).
37.
Qian
,
Y. H.
,
D.
d'Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier–Stokes equation
,”
EPL
17
(
6
),
479
(
1992
).
38.
Chapman
,
S.
, and
T. G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
(
Cambridge University
,
Cambridge, UK
,
1970
).
39.
Noble
,
D. R.
, and
J. R.
Torczynski
, “
A lattice-Boltzmann method for partially saturated computational cells
,”
Int. J. Mod. Phys. C
9
(
08
),
1189
1201
(
1998
).
40.
Strack
,
O. E.
, and
B. K.
Cook
, “
Three-dimensional immersed boundary conditions for moving solids in the lattice-Boltzmann method
,”
Int. J. Numer. Methods Fluids
55
(
2
),
103
125
(
2007
).
41.
Feng
,
Z. G.
, and
E. E.
Michaelides
, “
The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems
,”
J. Comput. Phys.
195
(
2
),
602
628
(
2004
).
42.
Peters
,
J. F.
, and
L. E.
Walizer
, “
Patterned nonaffine motion in granular media
,”
J. Eng. Mech.
139
(
10
),
1479
1490
(
2013
).
43.
Yeoh
,
G. H.
,
C. P.
Cheung
, and
J.
Tu
, “
Multiphase flow analysis using population balance modeling: bubbles, drops and particles
,” Butterworth-Heinemann (
2013
).
You do not currently have access to this content.