The failure (maximum) feed velocity in a LulzBot Taz 4 3D printer at various temperatures is determined for three polymers: Acrylonitrile butadiene styrene, poly(lactic acid) (PLA), and a PLA polyhydroxybutyrate copolymer. Through an approximate solution of the energy balance, we develop a model to correlate the dimensionless fiber feed velocity (represented by a Péclet number) with a dimensionless temperature. Using these dimensionless parameters, all polymers fall onto the same curve. However, when molten polymer is forced through a small nozzle to enable 3D printing, this curve also depends on another parameter: Nozzle diameter. Our model does not account for this parameter because it does not consider hydrodynamics due to the complexity of the coupled energy and momentum balances. Thus, we modify the Péclet number to account for hydrodynamics and produce a satisfactory master curve for all diameters and polymers. Our dimensionless numbers require determining the polymer thermal and rheological properties as well as the minimum possible temperature that can be used for 3D printing of any given polymer. We discuss a way to predict this temperature based on the entry pressure drop into the nozzle. Our results will enable designers and engineers to modify the extrusion die and polymer in order to obtain better 3D printed items, and these findings can be generalized to other 3D printers.

1.
Gibson
,
I.
,
D.
Rosen
, and
B.
Stucker
,
Additive Manufacture Technologies: Rapid Prototyping to Direct Digital Manufacturing
(
Springer
,
New York
,
2010
).
2.
Turner
,
B. N.
,
R.
Strong
, and
S. A.
Gold
, “
A review of melt extrusion additive manufacturing processes: I. Process design and modeling
,”
Rapid Prototyping J.
20
,
192
204
(
2014
).
3.
Yardimci
,
M.
,
T.
Hattori
,
S.
Guceri
, and
S.
Danforth
, in
Solid Freeform Fabrication Proceedings
, edited by
D.
Bourell
,
J.
Beaman
,
R.
Crawford
,
H.
Marcus
, and
J.
Barlow
(
University of Texas
,
Austin, TX
,
1997
), pp.
689
698
.
4.
Bellini
,
A.
,
S.
Guceri
, and
M.
Bertoldi
, “
Liquefier dynamics in fused deposition
,”
Trans. ASME J. Manuf. Sci. Eng.
126
,
237
246
(
2004
).
5.
Ramanath
,
H. S.
,
C. K.
Chua
,
K. F.
Leong
, and
K. D.
Shah
, “
Melt flow behaviour of poly-ε-caprolactone in fused deposition modelling
,”
J. Mater. Sci.—Mater. Med.
19
,
2541
2550
(
2008
).
6.
Cox
,
W. P.
, and
E. H.
Merz
, “
Correlation of dynamic and steady flow viscosities
,”
J. Polym. Sci.
XXVIII
,
619
622
(
1958
).
7.
See supplementary material at http://dx.doi.org/10.1122/1.4973852 for the differential scanning calorimetry data for all the polymers used in this work and the derivation of Eq. (2).
8.
Bird
,
R.
,
W.
Stewart
, and
E.
Lightfoot
,
Transport Phenomena
, revised 2nd ed. (
Wiley
,
New York
,
2006
).
9.
Tadmor
,
Z.
, and
C.
Gogos
,
Principles of Polymer Processing
, 2nd ed. (
John Wiley and Sons
,
Hoboken, NJ
,
2006
).
10.
Mortazavi
,
B.
,
F.
Hassouna
,
A.
Laachachi
,
A.
Rajabpour
,
S.
Ahzi
,
D.
Chapron
,
V.
Toniazzo
, and
D.
Ruch
, “
Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites
,”
Thermochim. Acta
552
,
106
113
(
2013
).
11.
Boles
,
R. L.
,
H. L.
Davis
, and
D. C.
Bogue
, “
Entrance flows of polymeric materials: Pressure drop and flow patterns
,”
Polym. Eng. Sci.
10
,
24
31
(
1970
).
12.
Kwon
,
T. H.
,
S. F.
Shen
, and
K. K.
Wang
, “
Pressure drop of polymeric melts in conical converging flow: Experiments and predictions
,”
Polym. Eng. Sci.
26
,
214
224
(
1986
).
13.
Agassant
,
J. F.
,
D. R.
Arda
,
C.
Combeaud
,
A.
Merten
,
H.
Munstedt
,
M. R.
Mackley
,
L.
Robert
, and
B.
Vergnes
, “
Polymer processing extrusion instabilities and methods for their elimination or minimisation
,”
Int. Polym. Process.
21
,
239
255
(
2006
).

Supplementary Material

You do not currently have access to this content.