We here extend to integral constitutive equations of the Doi–Edwards type the analysis of shear banding instabilities during shear startup recently performed by Moorcroft and Fielding [J. Rheol. 58, 103–147 (2014)]. Shear banding is the instability encountered in simple shear flows, whereby different shear rates coexist along the sample thickness, so that the velocity profile departs from the usually assumed linear profile. Results of both linear and nonlinear stability analysis mostly confirm those obtained by Moorcroft and Fielding [J. Rheol. 58, 103–147 (2014)] with the Rolie–Poly equation [Likhtman, A. E., and R. S. Graham, J. Non-Newtonian Fluid Mechan. 114, 1–12 (2003)] (which is an approximate differential counterpart of the Doi–Edwards integral one “[The Theory of Polymer Dynamics (Clarendon, Oxford, 1986)]”), but some significant differences are also found. Features that coincide with those predicted by the Rolie–Poly equation include: (i) For the nonmonotonic flow curve of the original Doi–Edwards equation, the viscous instability classically predicted in the decreasing part of the flow curve is preceded during startup by an elastic instability in the region of the stress overshoot; (ii) to the right of the flow-curve minimum, a region of metastability is found, whereas, to the left of the maximum, attempts at finding metastability have failed; and (iii) when convective constraint release (CCR) is accounted for, and a monotonic flow curve is obtained, transient banding instabilities of elastic origin in the shear-rate range of the quasiplateau region are again found close to the overshoot. On the other hand, the integral Doi–Edwards equation appears not to predict transient elastic instabilities to the left of the maximum of the flow curve, differently from what found by Moorcroft and Fielding [J. Rheol. 58, 103–147 (2014)] with the Rolie–Poly equation. Also, for the case where CCR generates a monotonic flow curve, the shear-rate range in the plateaulike region where elastic instabilities are found comes out much narrower than for the Rolie–Poly. All considered, the integral Doi–Edwards equation appears to predict fewer instabilities than its differential counterpart, which is perhaps more in line with the contradictory experimental results on banding of entangled polymers reported by different authors.

1.
Yerushalmi
,
J.
,
S.
Katz
, and
R.
Shinnar
, “
The stability of steady shear flows of some viscoelastic fluids
,”
Chem. Eng. Sci.
25
,
1891
1902
(
1970
).
2.
Olmsted
,
P. D.
, “
Perspectives on shear banding in complex fluids
,”
Rheol. Acta
47
(
3
),
283
300
(
2008
).
3.
Divoux
,
T.
,
M. A.
Fardin
,
S.
Manneville
, and
S.
Lerouge
, “
Shear banding of complex fluids
,” in
Annual Review of Fluid Mechanics
, edited by
S. H.
Davis
and
P.
Moin
(
Annual Reviews
,
Palo Alto
,
2016
), Vol.
48
, pp.
81
103
.
4.
Moorcroft
,
R. L.
, and
S. M.
Fielding
, “
Shear banding in time-dependent flows of polymers and wormlike micelles
,”
J. Rheol.
58
(
1
),
103
147
(
2014
).
5.
Boukany
,
P. E.
,
S. Q.
Wang
,
S.
Ravindranath
, and
L. J.
Lee
, “
Shear banding in entangled polymers in the micron scale gap: A confocal-rheoscopic study
,”
Soft Matter
11
(
41
),
8058
8068
(
2015
).
6.
Li
,
Y. F.
, and
G. B.
McKenna
, “
Startup shear of a highly entangled polystyrene solution deep into the nonlinear viscoelastic regime
,”
Rheol. Acta
54
(
9–10
),
771
777
(
2015
).
7.
Cao
,
J.
, and
A. E.
Likhtman
, “
Shear banding in molecular dynamics of polymer melts
,”
Phys. Rev. Lett.
108
(
2
),
028302
(
2012
).
8.
Mohagheghi
,
M.
, and
B.
Khomami
, “
Molecularly based criteria for shear banding in transient flow of entangled polymeric fluids
,”
Phys. Rev. E
93
(
6
),
062606
(
2016
).
9.
Likhtman
,
A. E.
, and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation
,”
J. Non-Newtonian Fluid Mech.
114
(
1
),
1
12
(
2003
).
10.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
11.
Graham
,
R. S.
,
A. E.
Likhtman
, and
T. C. B.
McLeish
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
(
5
),
1171
1200
(
2003
).
12.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
13.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. Part 4. Rheological properties
,”
J. Chem. Soc. Faraday Trans. 2
75
,
38
54
(
1979
).
14.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
On compatibility of the Cox-Merz rule with the model of Doi and Edwards
,”
J. Non-Newtonian Fluid Mech.
65
(
2–3
),
241
246
(
1996
).
15.
See supplementary material at http://dx.doi.org/10.1122/1.4971268 for an extension to a multi-mode Doi–Edwards fluid of the linear stability analysis of steady shear flows.
16.
Marrucci
,
G.
,
F.
Greco
, and
G.
Ianniruberto
, “
Possible role of force balance on entanglements
,”
Macromol. Symp.
158
,
57
64
(
2000
).
17.
Milner
,
S. T.
, “
Improved model of nonaffine strain measure
,”
J. Rheol.
45
(
5
),
1023
1028
(
2001
).
18.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Shear banding for a fluid obeying Doi-Edwards integral equation
,” in
XVIIth International Congress on Rheology
,
Kyoto, Japan
(
2016
).
19.
Olmsted
,
P. D.
,
O.
Radulescu
, and
C. Y. D.
Lu
, “
Johnson-Segalman model with a diffusion term in cylindrical Couette flow
,”
J. Rheol.
44
(
2
),
257
275
(
2000
).
20.
Grand
,
C.
,
J.
Arrault
, and
M. E.
Cates
, “
Slow transients and metastability in wormlike micelle rheology
,”
J. Phys. II
7
(
8
),
1071
1086
(
1997
).
21.
Spenley
,
N. A.
,
X. F.
Yuan
, and
M. E.
Cates
, “
Nonmonotonic constitutive laws and the formation of shear-banded flows
,”
J. Phys. II
6
(
4
),
551
571
(
1996
).
22.
Moorcroft
,
R. L.
,
M. E.
Cates
, and
S. M.
Fielding
, “
Age-dependent transient shear banding in soft glasses
,”
Phys. Rev. Lett.
106
(
5
),
055502
(
2011
).
23.
Sollich
,
P.
, “
Rheological constitutive equation for a model of soft glassy materials
,”
Phys. Rev. E
58(1)
,
738
759
(
1998
).
24.
Wang
,
S. Q.
,
G. X.
Liu
,
S. W.
Cheng
,
P. E.
Boukany
,
Y. Y.
Wang
, and
X.
Li
, “
Letter to the Editor: Sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers
,”
J. Rheol.
58
(
4
),
1059
1069
(
2014
).
25.
Wang
,
S. Q.
,
S.
Ravindranath
, and
P. E.
Boukany
, “
Homogeneous shear, wall slip, and shear banding of entangled polymeric liquids in simple-shear rheometry: A roadmap of nonlinear rheology
,”
Macromolecules
44
(
2
),
183
190
(
2011
).
26.
Hu
,
Y. T.
, “
Steady-state shear banding in entangled polymers?
,”
J. Rheol.
54
(
6
),
1307
1323
(
2010
).
27.
Hu
,
Y. T.
,
L.
Wilen
,
A.
Philips
, and
A.
Lips
, “
Is the constitutive relation for entangled polymers monotonic?
,”
J. Rheol.
51
(
2
),
275
295
(
2007
).
28.
Li
,
Y. F.
,
M.
Hu
,
G. B.
McKenna
,
C. J.
Dimitriou
,
G. H.
McKinley
,
R. M.
Mick
,
D. C.
Venerus
, and
L. A.
Archer
, “
Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions
,”
J. Rheol.
57
(
5
),
1411
1428
(
2013
).
29.
Berret
,
J. F.
,
D. C.
Roux
, and
G.
Porte
, “
Isotropic-to-nematic transition in wormlike micelles under shear
,”
J. Phys. II
4
(
8
),
1261
1279
(
1994
).
30.
Hu
,
Y. T.
,
C.
Palla
, and
A.
Lips
, “
Comparison between shear banding and shear thinning in entangled micellar solutions
,”
J. Rheol.
52
(
2
),
379
400
(
2008
).
31.
Lopez-Barron
,
C. R.
,
A. K.
Gurnon
,
A. P. R.
Eberle
,
L.
Porcar
, and
N. J.
Wagner
, “
Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation
,”
Phys. Rev. E
89
(
4
),
042301
(
2014
).
32.
Cates
,
M. E.
, “
Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers)
,”
J. Phys. Chem.
94
(
1
),
371
375
(
1990
).
33.
Granek
,
R.
, and
M. E.
Cates
, “
Stress relaxation in living polymers: Results from a Poisson renewal model
,”
J. Chem. Phys.
96
(
6
),
4758
4767
(
1992
).
34.
Spenley
,
N. A.
,
M. E.
Cates
, and
T. C. B.
McLeish
, “
Nonlinear rheology of wormlike micelles
,”
Phys. Rev. Lett.
71
(
6
),
939
942
(
1993
).

Supplementary Material

You do not currently have access to this content.