A framework for determining the first nonlinear relaxation modulus of a viscoelastic fluid from a medium-amplitude oscillatory shear (MAOS) deformation is constructed. Knowledge of this “MAOS relaxation modulus” allows one to predict the weakly nonlinear stress response of a material under an arbitrary transient deformation via a memory integral expansion. Our framework is demonstrated by explicitly determining the MAOS relaxation modulus for a dilute suspension of Brownian spheroids subject to a dual-frequency oscillatory shear flow. Specifically, we first calculate the second normal stress difference for such a deformation from a corotational memory integral expansion. Second, the microstructural stress response of the model system of Brownian spheroids is determined via a regular perturbation expansion of the orientation distribution function at small dimensionless strain-rate amplitude, or Weissenberg number. An analytical expression for the MAOS relaxation modulus is resolved by comparing the second normal stress difference results of the memory integral expansion and microstructural stress calculation. Finally, using the MAOS relaxation modulus, we reconstruct the stress response of the model system for the start-up and cessation of simple shear and uniaxial extension. In summary, our work offers an approach to utilizing medium (and large) amplitude oscillatory shear results to predict stress dynamics of viscoelastic fluids in other transient, nonlinear flows.

1.
Macosko
,
C. W.
,
Rheology: Principles, Measurements, and Applications
(
Wiley-VCH
,
New York
,
1994
).
2.
Barnes
,
H.
,
J.
Hutton
, and
K.
Walters
,
An Introduction to Rheology
(
Elsevier Science
,
Amsterdam, The Netherlands
,
1993
), Vol.
1
.
3.
Hyun
,
K.
,
S. H.
Kim
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear as a way to classify the complex fluids
,”
J. Non-Newtonian Fluid Mech.
107
,
51
65
(
2002
).
4.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
5.
Swan
,
J. W.
,
R. N.
Zia
, and
J. F.
Brady
, “
Large amplitude oscillatory microrheology
,”
J. Rheol.
58
,
1
41
(
2014
).
6.
Gurnon
,
A. K.
, and
N. J.
Wagner
, “
Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles
,”
J. Rheol.
56
,
333
351
(
2012
).
7.
Khair
,
A. S.
, “
Large amplitude oscillatory shear of the Giesekus model
,”
J. Rheol.
60
,
257
266
(
2016
).
8.
Pearson
,
D. S.
, and
W. E.
Rochefort
, “
Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields
,”
J. Polym. Sci.: Polym. Phys. Ed.
20
,
83
98
(
1982
).
9.
Bae
,
J.-E.
, and
K. S.
Cho
, “
Semianalytical methods for the determination of the nonlinear parameter of nonlinear viscoelastic constitutive equations from LAOS data
,”
J. Rheol.
59
,
525
555
(
2015
).
10.
Hyun
,
K.
,
E. S.
Baik
,
K. H.
Ahn
,
S. J.
Lee
,
M.
Sugimoto
, and
K.
Koyama
, “
Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts
,”
J. Rheol.
51
,
1319
1342
(
2007
).
11.
Langela
,
M.
,
U.
Wiesner
,
H. W.
Spiess
, and
M.
Wilhelm
, “
Microphase Reorientation in Block Copolymer Melts As Detected via FT Rheology and 2D SAXS
,”
Macromolecules
35
,
3198
3204
(
2002
).
12.
Oelschlaeger
,
C.
,
J. S.
Gutmann
,
M.
Wolkenhauer
,
H.-W.
Spiess
,
K.
Knoll
, and
M.
Wilhelm
, “
Kinetics of Shear Microphase Orientation and Reorientation in Lamellar Diblock and Triblock Copolymer Melts as Detected via FT-Rheology and 2D-SAXS
,”
Macromol. Chem. Phys.
208
,
1719
1729
(
2007
).
13.
Zhou
,
L.
,
L.
Cook
, and
G. H.
McKinley
, “
Probing shear-banding transitions of the VCM model for entangled wormlike micellar solutions using large amplitude oscillatory shear (LAOS) deformations
,”
J. Non-Newtonian Fluid Mech.
165
,
1462
1472
(
2010
).
14.
Dimitriou
,
C. J.
,
L.
Casanellas
,
T. J.
Ober
, and
G. H.
McKinley
, “
Rheo-PIV of a shear-banding wormlike micellar solution under large amplitude oscillatory shear
,”
Rheol. Acta
51
,
395
411
(
2012
).
15.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics
, 1st ed. (
John Wiley & Sons
,
New York
,
1977
).
16.
DePuit
,
R. J.
, and
T. M.
Squires
, “
Micro-macro-discrepancies in nonlinear microrheology: I. Quantifying mechanisms in a suspension of Brownian ellipsoids
,”
J. Phys.: Condens. Matter
24
,
464106
(
2012
).
17.
Dealy
,
J. M.
, and
J.
Wang
,
Melt Rheology and Its Role in Plastics Processing
, 2nd ed. (
Springer Science+Business Media
,
New York
,
2013
).
18.
Goddard
,
J. D.
, “
A Modified Functional Expansion for Viscoelastic Fluids
,”
Trans. Soc. Rheol.
11
,
381
399
(
1967
).
19.
Noll
,
W.
, “
A mathematical theory of the mechanical behavior of continuous media
,”
Arch. Ration. Mech. Anal.
2
,
197
226
(
1958
).
20.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
21.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University
,
New York
,
2012
).
22.
Bharadwaj
,
N. A.
, and
R. H.
Ewoldt
, “
The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear
,”
J. Rheol.
58
,
891
910
(
2014
).
23.
Swan
,
J. W.
,
E. M.
Furst
, and
N. J.
Wagner
, “
The medium amplitude oscillatory shear of semi-dilute colloidal dispersions. Part I: Linear response and normal stress differences
,”
J. Rheol.
58
,
307
337
(
2014
).
24.
Helmholtz
,
H.
,
On the Senstations of Tone
(
Dover, Mineola
,
NY
,
1957
).
25.
Roederer
,
J. G.
,
The Physics and Psychophysics of Music
, 4th ed. (
Springer Science+Business Media
,
New York
,
2008
).
26.
Parthasarathy
,
M.
, and
D. J.
Klingenberg
, “
Large amplitude oscillatory shear of ER suspensions
,”
J. Non-Newtonian Fluid Mech.
81
,
83
104
(
1999
).
27.
Hyun
,
K.
,
J. G.
Nam
,
M.
Wilhellm
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions
,”
Rheol. Acta
45
,
239
249
(
2006
).
28.
Zhao
,
Y.
,
S. J.
Haward
, and
A. Q.
Shen
, “
Rheological characterizations of wormlike micellar solutions containing cationic surfactant and anionic hydrotropic salt
,”
J. Rheol.
59
,
1229
1259
(
2015
).
29.
Green
,
A. E.
,
R. S.
Rivlin
, and
A.
Spencer
, “
The mechanics of non-linear materials with memory
,”
Arch. Ration. Mech. Anal.
3
,
82
90
(
1959
).
30.
Coleman
,
B. D.
, and
W.
Noll
, “
Foundations of Linear Viscoelasticity
,”
Rev. Mod. Phys.
33
,
239
249
(
1961
).
31.
Pipkin
,
A. C.
, “
Small Finite Deformations of Viscoelastic Solids
,”
Rev. Mod. Phys.
36
,
1034
1041
(
1964
).
32.
Bird
,
R. B.
,
O.
Hassager
, and
S. I.
Abdel-Khalik
, “
Co-rotational rheological models and the Goddard expansion
,”
AIChE J.
20
,
1041
1066
(
1974
).
33.
Stewart
,
W. E.
, and
J. P.
Sorensen
, “
Hydrodynamic Interaction Effects in Rigid Dumbbell Suspensions. II. Computations for Steady Shear Flow
,”
Trans. Soc. Rheol.
16
,
1
13
(
1972
).
34.
Hinch
,
E. J.
, and
L. G.
Leal
, “
The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles
,”
J. Fluid Mech.
52
,
683
712
(
1972
).
35.
Kim
,
S.
, and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Dover
,
Mineola, NY
,
2005
).
36.
Brenner
,
H.
, and
D. W.
Condiff
, “
Transport mechanics in systems of orientable particles. IV. convective transport
,”
J. Colloid Interface Sci.
47
,
199
264
(
1974
).
37.
Leal
,
L. G.
, and
E. J.
Hinch
, “
The effect of weak Brownian rotations on particles in shear flow
,”
J. Fluid Mech.
46
,
685
703
(
1971
).
38.
Leal
,
L. G.
, and
E. J.
Hinch
, “
The rheology of a suspension of nearly spherical particles subject to Brownian rotations
,”
J. Fluid Mech.
55
,
745
765
(
1972
).
39.
Abdel-Khalik
,
S. I.
,
O.
Hassager
, and
R. B.
Bird
, “
The Goddard expansion and the kinetic theory for solutions of rodlike macromolecules
,”
J. Chem. Phys.
61
,
4312
4316
(
1974
).
40.
Strand
,
S. R.
,
S.
Kim
, and
S. J.
Karrila
, “
Computation of rheological properties of suspensions of rigid rods: stress growth after inception of steady shear flow
,”
J. Non-Newtonian Fluid Mech.
24
,
311
329
(
1987
).
41.
Swan
,
J. W.
,
A. K.
Gurnon
, and
N. J.
Wagner
, “
The medium amplitude oscillatory shear of semidilute colloidal dispersions. Part II: Third harmonic stress contribution
,”
J. Rheol.
60
,
241
255
(
2016
).
42.
Brady
,
J. F.
, “
The rheological behavior of concentrated colloidal dispersions
,”
J. Chem. Phys.
99
,
567
581
(
1993
).
43.
Khair
,
A. S.
, and
T. M.
Bechtel
, “
Single particle motion in a sheared colloidal dispersion
,”
J. Rheol.
59
,
429
471
(
2015
).
44.
Batchelor
,
G. K.
, “
Brownian diffusion of particles with hydrodynamic interaction
,”
J Fluid Mech.
74
,
1
29
(
1976
).
45.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics
, 2nd ed. (
Wiley-Interscience
,
New York
,
1987
).
46.
Baek
,
S.-G.
, and
J. J.
Magda
, “
Monolithic rheometer plate fabricated using silicon micromachining technology and containing miniature pressure sensors for N1 and N2 measurements
,”
J. Rheol.
47
,
1249
1260
(
2003
).
47.
Honerkamp
,
J.
, and
J.
Weese
, “
A nonlinear regularization method for the calculation of relaxation spectra
,”
Rheol. Acta
32
,
65
73
(
1993
).
48.
Baumgaertel
,
M.
, and
H. H.
Winter
, “
Determination of discrete relaxation and retardation time spectra from dynamic mechanical data
,”
Rheol. Acta
28
,
511
519
(
1989
).
49.
Kamath
,
V.
, and
M.
Mackley
, “
The determination of polymer relaxation moduli and memory functions using integral transforms
,”
J. Non-Newtonian Fluid Mech.
32
,
119
144
(
1989
).
50.
Schweizer
,
T.
, and
W.
Schmidheiny
, “
A cone-partitioned plate rheometer cell with three partitions (CPP3) to determine shear stress and both normal stress differences for small quantities of polymeric fluids
,”
J. Rheol.
57
,
841
856
(
2013
).
51.
Adams
,
N.
, and
A.
Lodge
, “
Rheological Properties of Concentrated Polymer Solutions II. A Cone-And-Plate and Parallel-Plate Pressure Distribution Apparatus for Determining Normal Stress Differences in Steady Shear Flow
,”
Philos. Trans. R. Soc. London. Ser. A
256
,
149
184
(
1964
).
52.
Alcoutlabi
,
M.
,
S. G.
Baek
,
J. J.
Magda
,
X.
Shi
,
S. A.
Hutcheson
, and
G. B.
McKenna
, “
A comparison of three different methods for measuring both normal stress differences of viscoelastic liquids in torsional rheometers
,”
Rheol. Acta
48
,
191
200
(
2009
).
53.
Bracewell
,
R.
,
Fourier Analysis and Imaging
(
Springer
,
Boston, MA
,
2003
).
You do not currently have access to this content.