An experimental and numerical study on ram extrusion of bread dough was conducted in order to develop predictive models for the pressures involved, as well as the deformation of the extruded dough. Such studies are needed as high pressures can potentially lead to significant degassing, tearing, and shearing of the dough and hence poor bread quality; the latter limits the use of extrusion processes which would otherwise be a cost-effective forming process. A laboratory extrusion rig was designed, with dies of varying angles and exit radii. Rate dependent behavior was observed from tests conducted at different extrusion speeds, and higher extrusion pressure was reported for dies with smaller exit radius or larger die angle. A simulation of extrusion was performed to predict the extrusion pressure as well as the extrudate swell, as a function of die geometry and extrusion rate. A continuum approach was taken in the constitutive model of dough which is a starch filled system in a protein matrix. A nonlinear viscoelastic model combined for the first time with the Mullins model for filled rubbers is found to capture the continuum behavior well. A Coulomb friction law combined with a maximum shear stress limit was used to describe the contact definition between the extrusion barrel and the dough. Higher die angles and higher extrusion speeds require higher shear stress limit values for the model and the experiments to agree. A possible reason for this is that the shear stress limit depends on maximum strain as well as strain rate imposed during the extrusion process. Static zones were observed both experimentally and numerically. The onset of the static zones was predicted well but quantifying the geometry of the latter needs further studies.

1.
Xiao
,
W.
,
M. N.
Charalambides
, and
J. G.
Williams
, “
Sheeting of wheat flour dough
,”
Int. J. Food Sci. Technol.
42
,
699
707
(
2007
).
2.
Chakrabarti-Bell
,
S.
,
J. S.
Bergstrom
,
E.
Linskog
, and
T.
Sridhar
, “
Computational modelling of dough sheeting and physical interpretation of the non-linear rheological behaviour of wheat flour dough
,”
J. Food Eng.
100
,
278
288
(
2010
).
3.
Patel
,
M. J.
, and
S.
Chakrabarti
, “
Flour quality and dough elasticity: Dough sheetability
,”
J. Food Eng.
115
,
371
383
(
2013
).
4.
Bousquieres
,
J.
,
C.
Deligny
,
A.
Riaublanc
, and
T.
Lucas
, “
CLSM study of layers in laminated dough: roll out of layers and elastic recoil
,”
J. Cereal Sci.
60
,
82
91
(
2014
).
5.
Rough
,
S. L.
,
J.
Bridgwater
, and
D. I.
Wilson
, “
Effects of liquid phase migration on extrusion of microcrystalline cellulose pastes
,”
Int. J. Pharma.
204
,
117
126
(
2000
).
6.
Mascia
,
S.
,
M. J.
Patel
,
S. L.
Rough
,
P. J.
Martin
, and
D. I.
Wilson
, “
Liquid phase migration in the extrusion and squeezing of microcrystalline cellulose pastes
,”
Eur. J. Pharma. Sci.
29
,
22
34
(
2006
).
7.
Patel
,
M. J.
,
S.
Blackburn
, and
D. I.
Wilson
, “
Modelling of paste flows subject to liquid phase migration
,”
Int. J. Numer. Methods Eng.
72
,
1157
1180
(
2007
).
8.
Martin
,
P. J.
,
D. I.
Wilson
, and
P. E.
Bonnett
, “
Rheological study of a talc-based paste for extrusion-granulation
,”
J. Eur. Ceram. Soc.
24
,
3155
3168
(
2004
).
9.
Aydin
,
I.
,
F. R.
Biglari
,
B. J.
Briscoe
,
C. J.
Lawrence
, and
M. J.
Adams
, “
Physical and numerical modelling of ram extrusion of paste materials: conical die entry case
,”
Comput. Mater. Sci.
18
,
141
155
(
2000
).
10.
Muliawan
,
E. B.
, and
S. G.
Hatzikiriakos
, “
Rheology of mozzarella cheese: extrusion and rolling
,”
Int. Dairy J.
18
(
6
),
615
623
(
2008
).
11.
Ng
,
T. S. K.
, and
G. H.
McKinley
, “
Power law gels at finite strains: the nonlinear rheology of gluten gels
,”
J. Rheol.
52
(
2
),
417
449
(
2008
).
12.
Tanner
,
R. I.
,
S. C.
Dai
, and
F.
Qi
, “
Bread dough rheology and recoil: 1. Rheology
,”
J. Non-Newton. Fluid Mech.
148
,
33
40
(
2008
).
13.
Sofou
,
S.
,
E. B.
Muliawan
,
S. G.
Hatzikiriakos
, and
E.
Mitsoulis
, “
Rheological characterization and constitutive modelling of bread dough
,”
Rheol. Acta
47
(
4
),
369
381
(
2008
).
14.
Mohammed
,
M. A. P.
,
E.
Tarleton
,
M. N.
Charalambides
, and
J. G.
Williams
, “
Mechanical characterization and micromechanical modeling of bread dough
,”
J. Rheol.
57
(
1
),
249
272
(
2013
).
15.
Pena
,
E. D. L.
,
F. A.
Manthey
,
B. K.
Patel
, and
O. H.
Campanella
, “
Rheological properties of pasta dough during pasta extrusion: effect of moisture and dough formulation
,”
J. Cereal Sci.
60
,
346
351
(
2014
).
16.
Sarghini
,
F.
,
A.
Romano
, and
P.
Masi
, “
Experimental analysis and numerical simulation of pasta dough extrusion process
,”
J. Food Eng.
176
,
56
70
(
2016
).
17.
Lucisano
,
M.
,
M. A.
Pagani
,
M.
Mariotti
, and
D. P.
Locatelli
, “
Influence of die material on pasta characteristics
,”
Food Res. Int.
41
(
6
),
646
652
(
2008
).
18.
Dhanasekharan
,
K. M.
, and
J. L.
Kokini
, “
Viscoelastic flow modelling in the extrusion of a dough-like fluid
,”
J. Food Process Eng.
23
,
237
247
(
2000
).
19.
Dhanasekharan
,
K. M.
, and
J. L.
Kokini
, “
Design and scaling of wheat dough extrusion by numerical simulation of flow and heat transfer
,”
J. Food Eng.
60
(
4
),
421
430
(
2003
).
20.
Bagley
,
E. B.
,
F. R.
Dintzis
, and
S.
Chakrabarti
, “
Experimental and conceptual problems in the rheological characterization of wheat flour doughs
,”
Rheol. Acta
37
,
556
565
(
1998
).
21.
Hicks
,
C. I.
, and
H.
See
, “
The rheological characterisation of bread dough using capillary rheometer
,”
Rheol. Acta
49
,
719
732
(
2010
).
22.
Steffe
,
J. F.
,
Rheological Methods in Food Process Engineering
(
Freeman
,
Michigan
,
1996
).
23.
Wanigasooriya
,
L.
, “
Mechanical characterisation and ram extrusion of wheat flour dough
,” Ph.D. thesis,
Mechanical Engineering Department
,
Imperial College London, UK
,
2006
.
24.
Benbow
,
J.
, and
J.
Bridgwater
,
Paste Flow and Extrusion
(
Clarendon
,
Oxford
,
1993
).
25.
Cheyne
,
A.
,
J.
Barnes
, and
D. I.
Wilson
, “
Extrusion behaviour of cohesive potato starch pastes: I. Rheological characterisation
,”
J. Food Eng.
66(1)
,
1
12
(
2005
).
26.
Bryan
,
M. P.
,
S. L.
Rough
, and
D. I.
Wilson
, “
Investigation of static zones and wall slip through sequential ram extrusion of contrasting micro-crystalline cellulose-based pastes
,”
J. Non-Newtonian Fluid Mech.
220
,
57
68
(
2015
).
27.
Perrot
,
A.
,
Y.
Melinge
,
D.
Rangeard
,
F.
Micaelli
,
P.
Estelle
, and
C.
Lanos
, “
Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate
,”
Rheol. Acta
51
,
743
754
(
2012
).
28.
Mitsoulis
,
E.
, and
S. G.
Hatzikiriakos
, “
Bagley correction: The effect of contraction angle and its prediction
,”
Rheol. Acta
42
,
309
320
(
2003
).
29.
Charalambides
,
M. N.
,
L.
Wanigasooriya
,
J. G.
Williams
,
S. M.
Goh
, and
S.
Chakrabarti
, “
Large deformation extensional rheology of bread dough
,”
Rheol. Acta
46
,
239
248
(
2006
).
30.
Mullins
,
L.
, “
Effect of stretching on properties of rubber
,”
J. Rubber Res.
21
(2),
281
300
(
1948
).
31.
Mullins
,
L.
, and
N. R.
Tobbin
, “
Theoretical model for the elastic behaviour of filler-reinforced vulcanized rubbers
,”
Rubbers Chem. Technol.
30
(
2
),
555
571
(
1957
).
32.
Goh
,
S. M.
,
M. N.
Charalambides
, and
J. G.
Williams
, “
Determination of the constitutive constant of non-linear viscoelastic materials
,”
Mech. Time-Depend. Mater.
8
,
255
268
(
2004
).
33.
Williams
,
J. G.
,
Stress Analysis of Polymers
(
John Wiley
,
London
,
1980
).
34.
Ciambella
,
J.
,
M.
Destrade
, and
R. W.
Ogden
, “
On the ABAQUS FEA model of finite viscoelasticity
,”
Rubber Chem. Technol.
82
(
2
),
184
193
(
2009
).
35.
Mohammed
,
M. A. P.
, “
Mechanical characterisation, processing and microstructure of wheat flour dough
,” Ph.D. thesis,
Mechanical Engineering Department
,
Imperial College London, UK
,
2012
.
36.
Ogden
,
R. W.
, and
D. G.
Roxburgh
, “
A pseudo-elastic model for the Mullins effect in filled rubber
,”
Proc. R. Soc. London, Ser. A
455
,
2861
2877
(
1999
).
37.
ABAQUS
,
User Manual ver 6.14
(
Hibbit Karlsson and Sorensen
,
Providence
,
2014
).
38.
Charalambides
,
M. N.
,
S. M.
Goh
,
L.
Wanigasooriya
,
J. G.
Williams
, and
W.
Xiao
, “
Effect of friction on uniaxial compression of bread dough
,”
J. Mater. Sci.
40
,
3375
3381
(
2005
).
39.
Gracia
,
L. A.
,
E.
Pena
,
J. M.
Royo
,
J. L.
Pelegay
, and
B.
Calvo
, “
A comparison between pseudo-elastic and damage models for modelling the Mullins effect in industrial rubber components
,”
Mech. Res. Commun.
36
,
769
776
(
2009
).
40.
Bose
,
K.
, and
A.
Dorfmann
, “
Computational aspects of a pseudo-elastic constitutive model for muscle properties in a soft-bodied antropod
,”
Int. J. Non-Linear Mech.
44
,
42
50
(
2009
).
41.
Dieter
,
G. E.
,
Mechanical Metallurgy
, SI Metric Ed. (
McGraw-Hill
,
Tokyo
,
1988
).
You do not currently have access to this content.