We present unique nonlinear rheological data of well-defined symmetric Cayley-tree poly(methyl methacrylates) in shear and uniaxial extension. Earlier work has shown that their linear viscoelasticity is governed by the hierarchical relaxation of different generations, whereas the segments between branch points are responsible for their substantial strain hardening as compared to linear homopolymers of the same total molar mass at the same value of imposed stretch rate. Here, we extend that work in order to obtain further experimental evidence that will help understanding the molecular origin of the remarkable properties of these highly branched macromolecules. In particular, we address three questions pertinent to the specific molecular structure: (i) Is steady state attainable during uniaxial extension? (ii) What is the respective transient response in simple shear? and (iii) How does stress relax upon cessation of extension or shear? To accomplish our goal, we utilize state-of-the-art instrumentation, i.e., filament stretching rheometry and cone-partitioned plate shear rheometry for polymers with 3 and 4 generations, and complement it with state-of-the-art modeling predictions using the branch-on-branch (BoB) algorithm. The data indicate that the extensional viscosity reaches a steady state value, whose dependence on extensional rate is identical to that of entangled linear and other branched polymer melts. Nonlinear shear is characterized by transient stress overshoots and the validity of the Cox–Merz rule. Remarkably, nonlinear stress relaxation is much broader and slower in extension compared to shear. It is also slower at higher generation, and rate-independent for rates below the Rouse rate of the outer segment. For extension, the relaxation time is longer than that of the linear stress relaxation, suggesting a strong “elastic memory” of the material. These results are described by BoB semiquantitatively, both in linear and nonlinear shear and extensional regimes. Given the fact that the segments between branch points are less than three entanglements long, this is a very promising outcome that gives confidence in using BoB for understanding the key features. Moreover, the response of the segments between generations controls the rheology of the Cayley trees. Their substantial stretching in uniaxial extension appears responsible for strain hardening, whereas coupling of stretches of different parts of the polymer appears to be the origin of the slower subsequent relaxation of extensional stress. Concerning the latter effect, for which predictions are not available, it is hoped that the present experimental findings and proposed framework of analysis will motivate further developments in the direction of molecular constitutive models for branched and hyperbranched polymers.

1.
Snijkers
,
F.
,
R.
Pasquino
,
P. D.
Olmsted
, and
D.
Vlassopoulos
, “
Perspectives on the viscoelasticity and flow behavior of entangled linear and branched polymers
,”
J. Phys. Condens. Matter
27
,
1
25
(
2015
).
2.
van Ruymbeke
,
E.
,
H.
Lee
,
T.
Chang
,
A.
Nikopoulou
,
N.
Hadjichristidis
,
F.
Snijkers
, and
D.
Vlassopoulos
, “
Molecular rheology of branched polymers: Decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling
,”
Soft Matter
10
,
4762
4777
(
2014
).
3.
Li
,
S. W.
,
H. E.
Park
,
J. M.
Dealy
,
M.
Maric
,
H.
Lee
,
K.
Im
,
H.
Choi
,
T.
Chang
,
M. S.
Rahman
, and
J.
Mays
, “
Detecting structural polydispersity in branched polybutadienes
,”
Macromolecules
44
,
208
214
(
2011
).
4.
Torres
,
E.
,
S.-W.
Li
,
S.
Costeux
, and
J. M.
Dealy
, “
Branching structure and strain hardening of branched metallocene polyethylenes
,”
J. Rheol.
59
,
1151
1172
(
2015
).
5.
McLeish
,
T. C. B.
,
J.
Allgaier
,
D. K.
Bick
,
G.
Bishko
,
P.
Biswas
,
R.
Blackwell
,
B.
Blottie
,
N.
Clarke
,
B.
Gibbs
,
D. J.
Groves
,
A.
Hakiki
,
R. K.
Heenan
,
J. M.
Johnson
,
R.
Kant
,
D. J.
Read
, and
R. N.
Young
, “
Dynamics of entangled H-Polymers: Theory, rheology, and neutron-scattering
,”
Macromolecules
32
,
6734
6758
(
1999
).
6.
McLeish
,
T. C. B.
, “
Tube theory of entangled polymer dynamics
,”
Adv. Phys.
51
,
1379
1527
(
2002
).
7.
McLeish
,
T. C. B.
,
N.
Clarke
,
E.
de Luca
,
L. R.
Hutchings
,
R. S.
Graham
,
T.
Gough
,
I.
Grillo
,
C. M.
Fernyhough
, and
P.
Chambon
, “
Neutron flow-mapping: Multiscale modelling opens a new experimental window
,”
Soft Matter
5
,
4426
4432
(
2009
).
8.
Read
,
D. J.
,
D.
Auhl
,
C.
Das
,
J.
den Doelder
,
M.
Kapnistos
,
I.
Vittorias
, and
T. C. B.
McLeish
, “
Linking models of polymerization and dynamics to predict branched polymer structure and flow
,”
Science
333
,
1871
1874
(
2011
).
9.
Liu
,
G.
,
S.
Cheng
,
H.
Lee
,
H.
Ma
,
H.
Xu
,
T.
Chang
,
R. P.
Quirk
, and
S. Q.
Wang
, “
Strain hardening in startup shear of long-chain branched polymer solutions
,”
Phys. Rev. Lett.
111
,
068302
(
2013
).
10.
Nielsen
,
J. K.
,
H. K.
Rasmussen
,
M.
Denberg
,
K.
Almdal
, and
O.
Hassager
, “
Nonlinear branch-point dynamics of multiarm polystyrene
,”
Macromolecules
39
,
8844
8853
(
2006
).
11.
Tezel
,
A. K.
,
L. G.
Leal
,
J. P.
Oberhauser
,
R. S.
Graham
,
K.
Jagannathan
, and
T. C. B.
McLeish
, “
The nonlinear response of entangled star polymers to startup of shear flow
,”
J. Rheol.
53
,
1193
1214
(
2009
).
12.
Ruocco
,
N.
,
L.
Dahbi
,
P.
Driva
,
N.
Hadjichristidis
,
J.
Allgaier
,
A.
Radulescu
,
M.
Sharp
,
P.
Lindner
,
E.
Straube
,
W.
Pyckhout-Hintzen
, and
D.
Richter
, “
Microscopic relaxation processes in branched-linear polymer blends by rheo-SANS
,”
Macromolecules
46
,
9122
9133
(
2013
).
13.
McLeish
,
T. C. B.
, and
R. G.
Larson
, “
Molecular constitutive equations for a class of branched polymers: The pom-pom polymer
,”
J. Rheol.
42
,
81
110
(
1998
).
14.
Lentzakis
,
H.
,
D.
Vlassopoulos
,
D. J.
Read
,
H.
Lee
,
T.
Chang
,
P.
Driva
, and
N.
Hadjichristidis
, “
Uniaxial extensional rheology of well-characterized comb polymers
,”
J. Rheol.
57
,
605
625
(
2013
).
15.
Lentzakis
,
H.
,
C.
Das
,
D.
Vlassopoulos
, and
D. J.
Read
, “
Pom-Pom-like constitutive equations for comb polymers
,”
J. Rheol.
58
,
1855
1875
(
2014
).
16.
Wingstrand
,
S. L.
,
N. J.
Alvarez
,
Q.
Huang
, and
O.
Hassager
, “
Linear and nonlinear universality in the rheology of polymer melts and solutions
,”
Phys. Rev. Lett.
115
,
78302
(
2015
).
17.
Marrucci
,
G.
, and
G.
Ianniruberto
, “
Interchain pressure effect in extensional flows of entangled polymer melts
,”
Macromolecules
37
,
3934
3942
(
2004
).
18.
Wagner
,
M. H.
, and
V. H.
Rolón-Garrido
, “
Verification of branch point withdrawal in elongational flow of pom-pom polystyrene melt
,”
AIP Conf. Proc.
1027
,
412
414
(
2008
).
19.
van Ruymbeke
,
E.
,
E. B.
Muliawan
,
S. G.
Hatzikiriakos
,
T.
Watanabe
,
A.
Hirao
, and
D.
Vlassopoulos
, “
Viscoelasticity and extensional rheology of model Cayley-Tree polymers of different generations
,”
J. Rheol.
54
,
643
662
(
2010
).
20.
Van Ruymbeke
,
E.
,
J.
Nielsen
, and
O.
Hassager
, “
Linear and Nonlinear Viscoelastic properties of bidisperse linear polymers: Mixing law and tube pressure effect
,”
J. Rheol.
54
,
1155
1172
(
2010
).
21.
Ianniruberto
,
G.
,
A.
Brasiello
, and
G.
Marrucci
, “
Simulations of fast shear flows of PS oligomers confirm monomeric friction reduction in fast elongational flows of monodisperse PS melts as indicated by rheooptical data
,”
Macromolecules
45
,
8058
8066
(
2012
).
22.
Yaoita
,
T.
,
T.
Isaki
,
Y.
Masubuchi
,
H.
Watanabe
,
G.
Ianniruberto
, and
G.
Marrucci
, “
Primitive chain network simulation of elongational flows of entangled linear chains: Stretch/orientation-induced reduction of monomeric friction
,”
Macromolecules
45
,
2773
2782
(
2012
).
23.
Ianniruberto
,
G.
, “
Extensional flows of solutions of entangled polymers confirm reduction of friction coefficient
,”
Macromolecules
48
,
6306
6312
(
2015
).
24.
Das
,
C.
,
N. J.
Inkson
,
D. J.
Read
,
M. A.
Kelmanson
, and
T. C. B.
McLeish
, “
Computational linear rheology of general branch-on-branch polymers
,”
J. Rheol.
50
,
207
234
(
2006
).
25.
Nielsen
,
J. K.
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension
,”
J. Rheol.
52
,
885
899
(
2008
).
26.
Hengeller
,
L.
,
Q.
Huang
,
A.
Dorokhin
,
N. J.
Alvarez
,
K.
Almdal
, and
O.
Hassager
, “
Stress relaxation of bi-disperse polystyrene melts
,”
Rheol. Acta
55
,
303
314
(
2016
).
27.
Bach
,
A.
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Extensional viscosity for polymer melts measured in the filament stretching rheometer
,”
J. Rheol.
47
,
429
(
2003
).
28.
Schweizer
,
T.
, and
W.
Schmidheiny
, “
A cone-partitioned plate rheometer cell with three partitions (CPP3) to determine shear stress and both normal stress differences for small quantities of polymeric fluids
,”
J. Rheol.
57
,
841
856
(
2013
).
29.
Snijkers
,
F.
, and
D.
Vlassopoulos
, “
Cone-partitioned-plate geometry for the ares rheometer with temperature control
,”
J. Rheol.
55
,
1167
1186
(
2011
).
30.
Costanzo
,
S.
,
Q.
Huang
,
G.
Ianniruberto
,
G.
Marrucci
,
O.
Hassager
, and
D.
Vlassopoulos
, “
Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements
,”
Macromolecules
49
,
3925
3935
(
2016
).
31.
Van Ruymbeke
,
E.
,
K.
Orfanou
,
M.
Kapinstos
,
H.
Iatrou
,
M.
Pitsikalis
,
N.
Hadjichristidis
,
D. J.
Lohse
, and
D.
Vlassopoulos
, “
Entangled dendritic polymers and beyond: Rheology of symmetric Cayley-Tree polymers and macromolecular self-assemblies
,”
Macromolecules
40
,
5941
5952
(
2007
).
32.
Hirao
,
A.
, and
A.
Matsuo
, “
Synthesis of chain-end-functionalized poly(methyl methacrylate)s with a definite number of benzyl bromide moieties and their application to star-branched polymers
,”
Macromolecules
36
,
9742
9751
(
2003
).
33.
Hirao
,
A.
,
A.
Matsuo
, and
T.
Watanabe
, “
Precise synthesis of dendrimer-like star-branched poly(methyl methacrylate)s up to seventh generation by an iterative divergent approach involving coupling and transformation reactions
,”
Macromolecules
38
,
8701
8711
(
2005
).
34.
Hirao
,
A.
,
K.
Sugiyama
,
Y.
Tsunoda
,
A.
Matsuo
, and
T.
Watanabe
, “
Precise synthesis of well-defined dendrimer-like star-branched polymers by iterative methodology based on living anionic polymerization
,”
J. Polym. Sci. Part A Polym. Chem.
44
,
6659
6687
(
2006
).
35.
Hirao
,
A.
,
K.
Sugiyama
,
A.
Matsuo
,
Y.
Tsunoda
, and
T.
Watanabe
, “
Synthesis of well-defined dendritic hyperbranched polymers by iterative methodologies using living/controlled polymerizations
,”
Polym. Int.
57
,
171
180
(
2008
).
36.
Hirao
,
A.
,
T.
Watanabe
,
K.
Ishizu
,
M.
Ree
,
S.
Jin
,
K. S.
Jin
,
A.
Deffieux
,
M.
Schappacher
, and
S.
Carlotti
, “
Precise synthesis and characterization of fourth-generation dendrimer-like star-branched poly(methyl methacrylate)s and block copolymers by iterative methodology based on living anionic polymerization
,”
Macromolecules
42
,
682
693
(
2009
).
37.
Snijkers
,
F.
,
D.
Vlassopoulos
,
H.
Lee
,
J.
Yang
,
T.
Chang
,
P.
Driva
,
N.
Hadjichristidis
, and
F.
Snijkers
, “
Start-up and relaxation of well-characterized comb polymers in simple shear polymers in simple shear
,”
J. Rheol.
57
,
1079
1100
(
2013
).
38.
Román Marín
,
J. M.
,
J. K.
Huusom
,
N. J.
Alvarez
,
Q.
Huang
,
H. K.
Rasmussen
,
A.
Bach
,
A. L.
Skov
, and
O.
Hassager
, “
A control scheme for filament stretching rheometers with application to polymer melts
,”
J. Nonnewton. Fluid Mech.
194
,
14
22
(
2013
).
39.
Huang
,
Q.
,
L.
Hengeller
,
N. J.
Alvarez
, and
O.
Hassager
, “
Bridging the gap between polymer melts and solutions in extensional rheology
,”
Macromolecules
48
,
4158
4163
(
2015
).
40.
Das
,
C.
,
D. J.
Read
,
D.
Auhl
,
M.
Kapnistos
,
J.
den Doelder
,
I.
Vittorias
, and
T. C. B.
McLeish
, “
Numerical prediction of nonlinear rheology of branched polymer melts
,”
J. Rheol.
58
,
737
757
(
2014
).
41.
Larson
,
R. G.
, “
Combinatorial rheology of branched polymer melts
,”
Macromolecules
34
,
4556
4571
(
2001
).
42.
Van Ruymbeke
,
E.
,
C.
Bailly
,
R.
Keunings
, and
D.
Vlassopoulos
, “
A general methodology to predict the linear rheology of branched polymers
,”
Macromolecules
39
,
6248
6259
(
2006
).
43.
Milner
,
S. T.
, and
T. C. B.
McLeish
, “
Parameter-free theory for stress relaxation in star polymer melts
,”
Macromolecules
30
,
2159
2166
(
1997
).
44.
Blackwell
,
R. J.
,
O. G.
Harlen
, and
T. C. B.
McLeish
, “
Theoretical linear and nonlinear rheology of symmetric treelike polymer melts
,”
Macromolecules
34
,
2579
2596
(
2001
).
45.
Marrucci
,
G.
, “
Relaxation by reptation and tube enlargement : A model for polydisperse polymers
,”
J. Polym. Sci. Polym. Phys. Ed.
23
,
159
177
(
1985
).
46.
Daniels
,
D. R.
,
T. C. B.
Mcleish
,
B. J.
Crosby
, and
R. N.
Young
, “
Molecular rheology of comb polymer melts. 1. Linear viscoelastic response
,”
Macromolecules
34
,
7025
7033
(
2001
).
47.
Kapnistos
,
M.
,
D.
Vlassopoulos
,
J.
Roovers
, and
L. G.
Leal
, “
Linear rheology of architecturally complex macromolecules : Comb polymers with linear backbones
,”
Macromolecules
38
,
7852
7862
(
2005
).
48.
Kirkwood
,
K. M.
,
L. G.
Leal
,
P.
Driva
, and
N.
Hadjichristidis
, “
Stress relaxation of comb polymers with short branches
,”
Macromolecules
42
,
9592
9608
(
2009
).
49.
Bacova
,
P.
,
L. G. D.
Hawke
,
D. J.
Read
, and
A. J.
Moreno
, “
Dynamics of branched polymers : A combined study by molecular dynamics simulations and tube theory
,”
Macromolecules
46
,
4633
4650
(
2013
).
50.
Zhou
,
Q.
, and
R. G.
Larson
, “
Direct molecular dynamics simulation of branch point motion in asymmetric star polymer melts
,”
Macromolecules
40
,
3443
3449
(
2007
).
51.
Park
,
S. J.
,
P. S.
Desai
,
X.
Chen
, and
R. G.
Larson
, “
Universal relaxation behavior of entangled 1,4-polybutadiene melts in the transition frequency region
,”
Macromolecules
48
,
4122
4131
(
2015
).
52.
Li
,
S. W.
,
H. E.
Park
, and
J. M.
Dealy
, “
Evaluation of molecular linear viscoelastic models for polydisperse H polybutadienes
,”
J. Rheol.
55
,
1341
1373
(
2011
).
53.
Bick
,
D.
, and
T.
McLeish
, “
Topological contributions to nonlinear elasticity in branched polymers
,”
Phys. Rev. Lett.
76
,
2587
2590
(
1996
).
54.
Verbeeten
,
W. M. H.
,
G. W. M.
Peters
, and
F. P. T.
Baaijens
, “
Differential constitutive equations for polymer melts: The extended Pom-Pom model
,”
J. Rheol.
45
,
823
843
(
2001
).
55.
Hawke
,
L. G. D.
,
Q.
Huang
,
O.
Hassager
, and
D. J.
Read
, “
Modifying the Pom-Pom model for extensional viscosity overshoots
,”
J. Rheol.
59
,
995
1017
(
2015
).
56.
Huang
,
Q.
,
S.
Agostini
,
L.
Hengeller
,
M.
Shivokhin
,
N. J.
Alvarez
,
L. R.
Hutchings
, and
O.
Hassager
, “
Dynamics of star polymers in fast extensional flow and stress relaxation
,”
Macromolecules
49
,
6694
6699
(
2016
).
57.
Snijkers
,
F.
, and
D.
Vlassopoulos
, “
Appraisal of the Cox-Merz rule for well-characterized entangled linear and branched polymers
,”
Rheol. Acta
53
,
935
946
(
2014
).
58.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Entangled melts of branched PS behave like linear PS in the steady state of fast elongational flows
,”
Macromolecules
46
,
267
275
(
2013
).
59.
Alvarez
,
N. J.
,
J. M. R.
Marín
,
Q.
Huang
,
M. L.
Michelsen
, and
O.
Hassager
, “
Creep measurements confirm steady flow after stress maximum in extension of branched polymer melts
,”
Phys. Rev. Lett.
110
,
1
4
(
2013
).
60.
Hassager
,
O.
,
K.
Mortensen
,
A.
Bach
,
K.
Almdal
,
H. K.
Rasmussen
, and
W.
Pyckhout-Hintzen
, “
Stress and neutron scattering measurements on linear polymer melts undergoing steady elongational flow
,”
Rheol. Acta
51
,
385
394
(
2012
).
You do not currently have access to this content.