The dynamics of individual Deoxyribonucleic acid (DNA) molecules in semidilute solutions undergoing planar extensional flow is simulated using a multiparticle Brownian dynamics algorithm, which incorporates hydrodynamic and excluded volume interactions in the context of a coarse-grained bead-spring chain model for DNA. The successive fine-graining protocol [P. Sunthar and J. R. Prakash, Macromolecules 38, 617–640 (2005); R. Prabhakar et al., J. Rheol. 48, 1251–1278 (2004)], in which simulation data acquired for bead-spring chains with increasing values of the number of beads Nb, is extrapolated to the number of Kuhn steps NK in DNA (while keeping key physical parameters invariant), is used to obtain parameter-free predictions for a range of Weissenberg numbers and Hencky strain units. A systematic comparison of simulation predictions is carried out with the experimental observations of Hsiao et al. [J. Rheol. (in press)], who have recently used single molecule techniques to investigate the dynamics of dilute and semidilute solutions of λ-phage DNA in planar extensional flow. In particular, they examine the response of individual chains to step-strain deformation followed by cessation of flow, thereby capturing both chain stretch and relaxation in a single experiment. The successive fine-graining technique is shown to lead to quantitatively accurate predictions of the experimental observations in the stretching and relaxation phases. Additionally, the transient chain stretch following a step strain deformation is shown to be much smaller in semidilute solutions than in dilute solutions, in agreement with experimental observations.

1.
Marciel
,
A. B.
, and
C. M.
Schroeder
, “
New directions of single polymer dynamics
,”
J. Poly. Sci.: Poly. Phys.
51
,
556
566
(
2013
).
2.
Chu
,
S.
, “
Laser manipulation of atoms and particles
,”
Science
253
,
861
866
(
1991
).
3.
Mai
,
D. J.
,
C.
Brockman
, and
C. M.
Schroeder
, “
Microfluidic systems for single DNA dynamics
,”
Soft Matter
8
,
10560
10572
(
2012
).
4.
Perkins
,
T. T.
,
D. E.
Smith
, and
S.
Chu
, “
Single polymer dynamics in an elongational flow
,”
Science
276
,
2016
2021
(
1997
).
5.
Smith
,
D. E.
, and
S.
Chu
, “
Response of flexible polymers to a sudden elongational flow
,”
Science
281
,
1335
1340
(
1998
).
6.
LeDuc
,
P.
,
C.
Haber
,
G.
Bao
, and
D.
Wirtz
, “
Dynamics of individual flexible polymers in a shear flow
,”
Nature
399
,
564
566
(
1999
).
7.
Smith
,
D. E.
,
H. P.
Babcock
, and
S.
Chu
, “
Single polymer dynamics in shear flows
,”
Science
283
,
1724
1727
(
1999
).
8.
Babcock
,
H. P.
,
R. E.
Teixeira
,
J. S.
Hur
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Visualization of molecular fluctuations near the critical point of the coil-stretch transition in polymer elongation
,”
Macromolecules
36
,
4544
4548
(
2003
).
9.
Wirtz
,
D.
, “
Direct measurement of the transport properties of a single DNA molecule
,”
Phys. Rev. Lett.
75
,
2436
2439
(
1995
).
10.
Perkins
,
T. T.
,
S. R.
Quake
,
D. E.
Smith
, and
S.
Chu
, “
Relaxation of a single DNA molecule observed via optical microscopy
,”
Science
264
,
822
825
(
1994
).
11.
Quake
,
S. R.
,
H.
Babcock
, and
S.
Chu
, “
The dynamics of partially extended single molecules of DNA
,”
Nature
388
,
151
154
(
1997
).
12.
Schroeder
,
C. M.
,
H. P.
Babcock
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Observation of polymer conformation hysteresis in extensional flow
,”
Science
301
,
1515
1519
(
2003
).
13.
Perkins
,
T. T.
,
D. E.
Smith
, and
S.
Chu
, “
Direct observation of tube-like motion of a single polymer chain
,”
Science
264
,
819
822
(
1994
).
14.
Smith
,
D. E.
,
T. T.
Perkins
, and
S.
Chu
, “
Self-diffusion of an entangled DNA molecule by reptation
,”
Phys. Rev. Lett.
75
,
4146
4149
(
1995
).
15.
Huber
,
B.
,
M.
Harasim
,
B.
Wunderlich
,
M.
Kröger
, and
A. R.
Bausch
, “
Microscopic origin of the non-Newtonian viscosity of semiflexible polymer solutions in the semidilute regime
,”
ACS Macro Lett.
3
,
136
140
(
2014
).
16.
Smith
,
D. E.
,
T. T.
Perkins
, and
S.
Chu
, “
Dynamical scaling of DNA diffusion coefficients
,”
Macromolecules
29
,
1372
1373
(
1996
).
17.
Perkins
,
T.
,
D.
Smith
,
R.
Larson
, and
S.
Chu
, “
Stretching of a single tethered polymer in a uniform flow
,”
Science
268
,
83
87
(
1995
).
18.
Babcock
,
H. P.
,
D. E.
Smith
,
J. S.
Hur
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Relating the microscopic and macroscopic response of a polymeric fluid in a shearing flow
,”
Phys. Rev. Lett.
85
,
2018
2021
(
2000
).
19.
Teixeira
,
R. E.
,
A. K.
Dambal
,
D. H.
Richter
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
The individual dynamics of entangled DNA in solution
,”
Macromolecules
40
,
2461
2476
(
2007
).
20.
Harasim
,
M.
,
B.
Wunderlich
,
O.
Peleg
,
M.
Kröger
, and
A. R.
Bausch
, “
Direct observation of the dynamics of semiflexible polymers in shear flow
,”
Phys. Rev. Lett.
110
,
108302
(
2013
).
21.
de Gennes
,
P. G.
, “
Molecular individualism
,”
Science
276
,
1999
2000
(
1997
).
22.
Sunthar
,
P.
, and
J. R.
Prakash
, “
Parameter-free prediction of DNA conformations in elongational flow by successive fine graining
,”
Macromolecules
38
,
617
640
(
2005
).
23.
Shaqfeh
,
E. S. G.
, “
The dynamics of single-molecule DNA in flow
,”
J. Non-Newtonian Fluid Mech.
130
,
1
28
(
2005
).
24.
Larson
,
R. G.
, and
H.
Hu
, “
Brownian dynamics simulations of a DNA molecule in an extensional flow field
,”
J. Rheol.
43
,
267
304
(
1999
).
25.
Jendrejack
,
R. M.
,
J. J.
de Pablo
, and
M. D.
Graham
, “
Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions
,”
J. Chem. Phys.
116
,
7753
7759
(
2002
).
26.
Hsieh
,
C.-C.
,
L.
Li
, and
R. G.
Larson
, “
Modeling hydrodynamic interaction in Brownian dynamics: Simulations of extensional flows of dilute suspensions of DNA and polystyrene
,”
J. Non-Newtonian Fluid Mech.
113
,
147
191
(
2003
).
27.
Schroeder
,
C. M.
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Effect of hydrodynamic interactions on DNA dynamics in extensional flow: Simulation and single molecule experiment
,”
Macromolecules
37
,
9242
9256
(
2004
).
28.
Hur
,
J. S.
,
E. S. G.
Shaqfeh
,
H. P.
Babcock
,
D. E.
Smith
, and
S.
Chu
, “
Dynamics of dilute and semidilute DNA solutions in the start-up of shear flow
,”
J. Rheol.
45
,
421
450
(
2001
).
29.
Robertson
,
R. M.
, and
D. E.
Smith
, “
Self-diffusion of entangled linear and circular DNA molecules: Dependence on length and concentration
,”
Macromolecules
40
,
3373
3377
(
2007
).
30.
Liu
,
Y.
,
Y.
Jun
, and
V.
Steinberg
, “
Concentration dependence of the longest relaxation times of dilute and semi-dilute polymer solutions
,”
J. Rheol.
53
,
1069
1085
(
2009
).
31.
Ramakrisna
,
S.
,
K.
Fujihara
,
W.-E.
Teo
,
T.-C.
Lim
, and
Z.
Ma
,
An Introduction to Electrospinning and Nanofibers
(
World Scientific
,
Singapore
,
2005
).
32.
de Gans
,
B. J.
,
P. C.
Duineveld
, and
U. S.
Schubert
, “
Inkjet printing of polymers: State of the art and future developments
,”
Adv. Mater.
16
,
203
213
(
2004
).
33.
Kozer
,
N.
,
Y. Y.
Kuttner
,
G.
Haran
, and
G.
Schreiber
, “
Protein-protein association in polymer solutions: From dilute to semidilute to concentrated
,”
Biophys. J.
92
,
2139
2149
(
2007
).
34.
de Gennes
,
P.-G.
,
Scaling Concepts in Polymer Physics
(
Cornell University
,
Ithaca
,
1979
).
35.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
Oxford
,
2003
).
36.
Jain
,
A.
,
B.
Dünweg
, and
J. R.
Prakash
, “
Dynamic crossover scaling in polymer solutions
,”
Phys. Rev. Lett.
109
,
088302
(
2012
).
37.
Hsiao
,
K.
,
C.
Sasmal
,
J. R.
Prakash
, and
C. M.
Schroeder
, “
Direct observation of DNA dynamics in semi-dilute solutions in extensional flow
,”
J. Rheol.
61
,
151
167
(
2017
).
38.
Jain
,
A.
,
P.
Sunthar
,
B.
Dünweg
, and
J. R.
Prakash
, “
Optimization of a Brownian dynamics algorithm for semidilute polymer solutions
,”
Phys. Rev. E
85
,
066703
(
2012
).
39.
Jain
,
A.
,
C.
Sasmal
,
R.
Hartkamp
,
B. D.
Todd
, and
J. R.
Prakash
, “
Brownian dynamics simulations of planar mixed flows of polymer solutions at finite concentrations
,”
Chem. Eng. Sci.
121
,
245
257
(
2015
).
40.
Prabhakar
,
R.
,
J. R.
Prakash
, and
T.
Sridhar
, “
A successive fine-graining scheme for predicting the rheological properties of dilute polymer solutions
,”
J. Rheol.
48
,
1251
1278
(
2004
).
41.
Pecora
,
R.
, “
DNA: A model compound for solution studies of macromolecules
,”
Science
251
,
893
898
(
1991
).
42.
Robertson
,
R. M.
, and
D. E.
Smith
, “
Diffusion of isolated DNA molecules: Dependence on length and topology
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
7310
7314
(
2006
).
43.
Larson
,
R. G.
, “
The rheology of dilute solutions of flexible polymers: Progress and problems
,”
J. Rheol.
49
,
1
70
(
2005
).
44.
Pham
,
T. T.
,
P.
Sunthar
, and
J. R.
Prakash
, “
An alternative to the bead-rod model: Bead-spring chains with successive fine graining
,”
J. Non-Newtonian Fluid Mech.
149
,
9
19
(
2008
).
45.
Sunthar
,
P.
,
D. A.
Nguyen
,
R.
Dubbelboer
,
J. R.
Prakash
, and
T.
Sridhar
, “
Measurement and prediction of the elongational stress growth in a dilute solution of DNA molecules
,”
Macromolecules
38
,
10200
10209
(
2005
).
46.
Saadat
,
A.
, and
B.
Khomami
, “
Molecular based prediction of the extensional rheology of high molecular weight polystyrene dilute solutions: A hi-fidelity Brownian dynamics approach
,”
J. Rheol.
59
,
1507
1525
(
2015
).
47.
Ahlrichs
,
P.
,
R.
Everaers
, and
B.
Dünweg
, “
Screening of hydrodynamic interactions in semidilute polymer solutions: A computer simulation study
,”
Phys. Rev. E
64
,
040501
(
2001
).
48.
Dünweg
,
B.
, and
A. J. C.
Ladd
, “
Lattice Boltzmann simulations of soft matter systems
,”
Adv. Poly. Sci.
221
,
89
166
(
2009
).
49.
Huang
,
C.-C.
,
R. G.
Winkler
,
G.
Sutmann
, and
G.
Gompper
, “
Semidilute polymer solutions at equilibrium and under shear flow
,”
Macromolecules
43
,
10107
10116
(
2010
).
50.
Stoltz
,
C.
,
J.
de Pablo
, and
M.
Graham
, “
Concentration dependence of shear and extensional rheology of polymer solutions: Brownian dynamics simulations
,”
J. Rheol.
50
,
137
167
(
2006
).
51.
Saadat
,
A.
, and
B.
Khomami
, “
Matrix-free Brownian dynamics simulation technique for semidilute polymeric solutions
,”
Phys. Rev. E
92
,
033307
(
2015
).
52.
Kraynik
,
A. M.
, and
D. A.
Reinelt
, “
Extensional motions of spatially periodic lattices
,”
Int. J. Multiphase Flow
18
,
1045
1059
(
1992
).
53.
Hunt
,
T. A.
,
S.
Bernardi
, and
B. D.
Todd
, “
A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow
,”
J. Chem. Phys.
133
,
154116
(
2010
).
54.
See supplementary material at http://dx.doi.org/10.1122/1.4972237 for details of the following: integration scheme for the stochastic differential equation; simulation procedure and protocols; particular forms of the spring force, and the hydrodynamic interaction tensor used here; procedure for determining the longest relaxation time; comparison of the results of successive fine graining for z = 0.7 and z = 1.0; and demonstration of the independence from choice of value for K.
55.
Pan
,
S.
,
D. A.
Nguyen
,
T.
Sridhar
,
P.
Sunthar
, and
J. R.
Prakash
, “
Universal solvent quality crossover of the zero shear rate viscosity of semidilute DNA solutions
,”
J. Rheol.
58
,
339
368
(
2014
).
56.
Pan
,
S.
,
D.
Ahirwal
,
D. A.
Nguyen
,
T.
Sridhar
,
P.
Sunthar
, and
J. R.
Prakash
, “
Viscosity radius of polymers in dilute solutions: Universal behavior from DNA rheology and Brownian dynamics simulations
,”
Macromolecules
47
,
7548
7560
(
2014
).
57.
Kumar
,
K. S.
, and
J. R.
Prakash
, “
Equilibrium swelling and universal ratios in dilute polymer solutions: Exact Brownian dynamics simulations for a delta function excluded volume potential
,”
Macromolecules
36
,
7842
7856
(
2003
).
58.
Prakash
,
J. R.
, and
H. C.
Öttinger
, “
Viscometric functions for a dilute solution of polymers in a good solvent
,”
Macromolecules
32
,
2028
2043
(
1999
).
59.
Sunthar
,
P.
, and
J. R.
Prakash
, “
Dynamic scaling in dilute polymer solutions: The importance of dynamic correlations
,”
Europhys. Lett.
75
(
1
),
77
83
(
2006
).
60.
Prakash
,
J. R.
, “
The influence of the range of excluded volume interactions on the linear viscoelastic properties of dilute polymer solutions
,”
Chem. Eng. Sci.
56
(
19
),
5555
5564
(
2001
).
61.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Fluid Mechanics
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol.
1
.
62.
Todd
,
B. D.
, and
P. J.
Daivis
, “
Non-equilibrium molecular dynamics simulations of planar elongational flow with spatially and temporally periodic boundary conditions
,”
Phys. Rev. Lett.
81
,
1118
1121
(
1998
).
63.
Baranyai
,
A.
, and
P. T.
Cummings
, “
Steady state simulation of planar elongation flow by nonequilibrium molecular dynamics
,”
J. Chem. Phys.
110
,
42
45
(
1999
).
64.
Zimm
,
B. H.
, “
Chain molecule hydrodynamics by the Monte-Carlo method and the validity of the Kirkwood-Riseman approximation
,”
Macromolecules
13
,
592
602
(
1980
).
65.
Garcia De la Torre
,
J.
,
M. C.
Lopez Martinez
, and
M. M.
Tirado
, “
Monte Carlo study of hydrodynamic properties of flexible linear chains: Analysis of several approximate methods
,”
Macromolecules
17
,
2715
2722
(
1984
).
66.
Freire
,
J. J.
,
A.
Rey
, and
J.
Garcia de La Torre
, “
Monte Carlo calculations for linear and star polymers with intramolecular interactions. 2. Nonpreaveraged study of hydrodynamic properties at the
θ
state
,”
Macromolecules
19
,
457
462
(
1986
).
67.
García Bernal
,
J. M.
,
M. M.
Tirado
,
J. J.
Freire
, and
J.
Garcia de La Torre
, “
Monte Carlo calculation of hydrodynamic properties of linear and cyclic polymers in good solvents
,”
Macromolecules
24
,
593
598
(
1991
).
68.
Kröger
,
M.
,
A.
Alba-Pérez
,
M.
Laso
, and
H. C.
Öttinger
, “
Variance reduced Brownian simulation of a bead-spring chain under steady shear flow considering hydrodynamic interaction effects
,”
J. Chem. Phys.
113
,
4767
4773
(
2000
).
69.
Öttinger
,
H. C.
, “
Generalized Zimm model for dilute polymer solutions under theta conditions
,”
J. Chem. Phys.
86
,
3731
3749
(
1987
).
70.
Öttinger
,
H. C.
, “
Gaussian approximation for Rouse chains with hydrodynamic interaction
,”
J. Chem. Phys.
90
,
463
473
(
1989
).
71.
Prakash
,
J. R.
, and
H. C.
Öttinger
, “
Universal viscometric functions for dilute polymer solutions
,”
J. Non-Newtonian Fluid Mech.
71
(
3
),
245
272
(
1997
).
72.
Prakash
,
J. R.
, “
Rouse chains with excluded volume interactions in steady simple shear flow
,”
J. Rheol.
46
(
6
),
1353
1380
(
2002
).
73.
Kumar
,
K. S.
, and
J. R.
Prakash
, “
Universal consequences of the presence of excluded volume interactions in dilute polymer solutions undergoing shear flow
,”
J. Chem. Phys.
121
,
3886
3897
(
2004
).
74.
Somani
,
S.
,
E. S. G.
Shaqfeh
, and
J. R.
Prakash
, “
Effect of solvent quality on the coil-stretch transition
,”
Macromolecules
43
,
10679
10691
(
2010
).
75.
Bosko
,
J. T.
, and
J. R.
Prakash
, “
Universal behavior of dendrimer solutions
,”
Macromolecules
44
(
3
),
660
670
(
2011
).
76.
Miyaki
,
Y.
,
Y.
Einaga
,
H.
Fujita
, and
M.
Fukuda
, “
Flory's viscosity factor for the system polystyrene + cyclohexane at 34.5 °C
,”
Macromolecules
13
(
3
),
588
592
(
1980
).
77.
Krigbaum
,
W. R.
,
L.
Mandelkern
, and
P. J.
Flory
, “
Molecular weight dependence of intrinsic viscosity of polymer solutions
,”
J. Poly. Sci.
9
,
381
384
(
1952
).
78.
Krigbaum
,
W. R.
, and
P. J.
Flory
, “
Molecular weight dependence of the intrinsic viscosity of polymer solutions II
,”
J. Poly. Sci.
11
,
37
51
(
1953
).
79.
Tominaga
,
Y.
,
I.
Suda
,
M.
Osa
,
T.
Yoshizaki
, and
H.
Yamakawa
, “
Viscosity and hydrodynamic-radius expansion factors of oligo- and poly(a-methylstyrene)s in dilute solution
,”
Macromolecules
35
,
1381
1388
(
2002
).
80.
Yamakawa
,
H.
,
Modern Theory of Polymer Solutions
(
Harper & Row
,
London
,
1971
).
81.
Zimm
,
B. H.
, “
Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss
,”
J. Chem. Phys.
24
,
269
278
(
1956
).
82.
Öttinger
,
H. C.
, and
Y.
Rabin
, “
Renormalization-group calculation of viscometric functions based on conventional polymer kinetic theory
,”
J. Non-Newtonian Fluid Mech.
33
(
1
),
53
93
(
1989
).
83.
Schäfer
,
L.
,
Excluded Volume Effects in Polymer Solutions: As Explained by the Renormalization Group
(
Springer Science & Business Media
,
Berlin
,
2012
).
84.
Prakash
,
J. R.
, “
Rouse chains with excluded volume interactions: Linear viscoelasticity
,”
Macromolecules
34
(
10
),
3396
3411
(
2001
).
85.
Kundukad
,
B.
,
J.
Yan
, and
P. S.
Doyle
, “
Effect of YOYO-1 on the mechanical properties of DNA
,”
Soft Matter
10
(
48
),
9721
9728
(
2014
).
86.
Bird
,
R. B.
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Kinetic Theory
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol.
2
.
87.
Prabhakar
,
R.
,
S.
Gadkari
,
T.
Gopesh
, and
M. J.
Shaw
, “
Influence of stretching induced self-concentration and self-dilution on coil-stretch hysteresis and capillary thinning of unentangled polymer solutions
,”
J. Rheol.
60
(
3
),
345
366
(
2016
).

Supplementary Material

You do not currently have access to this content.