The dynamic behavior of semidilute polymer solutions is governed by an interplay between solvent quality, concentration, molecular weight, and flow type. Semidilute solutions are characterized by large fluctuations in polymer concentration, wherein polymer coils interpenetrate but may not be topologically entangled at equilibrium. In nonequilibrium flows, it is generally thought that polymer chains can “self-entangle” in semidilute solutions, thereby leading to entanglements in solutions that are nominally unentangled at equilibrium. Despite recent progress in the field, we still lack a complete molecular-level understanding of the dynamics of polymer chains in semidilute solutions. In this work, we use single molecule techniques to investigate the dynamics of dilute and semidilute solutions of λ-phage deoxyribonucleic acid in planar extensional flow, including polymer relaxation from high stretch, transient stretching dynamics in step-strain experiments, and steady-state stretching in flow. Our results are consistent with a power-law scaling of the longest polymer relaxation time τ(c/c*)0.48 in semidilute solutions, where c is the polymer concentration and c* is the overlap concentration. Based on these results, an effective excluded volume exponent ν ≈ 0.56 was found, which is in good agreement with recent bulk rheological experiments. We further studied the nonequilibrium stretching dynamics of semidilute polymer solutions, including transient (1 c*) and steady-state (0.2 c* and 1 c*) stretching dynamics in planar extensional flow using an automated microfluidic trap. Our results show that polymer stretching dynamics in semidilute solutions is a strong function of concentration. In particular, a decrease in transient polymer stretch in semidilute solutions at moderate Weissenberg number (Wi) compared to dilute solutions is observed. Moreover, our experiments reveal a milder coil-to-stretch transition for semidilute polymer solutions at 0.2 c* and 1 c* compared to dilute solutions. Interestingly, a unique set of molecular conformations during the transient stretching process for single polymers in semidilute solutions is observed, which suggests transient stretching pathways for polymer chains in semidilute solutions are qualitatively different compared to dilute solutions due to intermolecular interactions. Taken together, this work provides a molecular framework for understanding the nonequilibrium stretching dynamics of semidilute solutions in strong flows.

1.
Jain
,
A.
,
B.
Dünweg
, and
J. R.
Prakash
, “
Dynamic crossover scaling in polymer solutions
,”
Phys. Rev. Lett.
109
,
088302
(
2012
).
2.
Rubinstein
,
M.
, and
R.
Colby
,
Polymer Physics
(
Oxford University
,
Oxford
,
2003
).
3.
Graessley
,
W. W.
, “
Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power
,”
Polymer
21
,
258
262
(
1980
).
4.
Brown
,
W.
, and
R.
Johnsen
, “
Dynamics of semidilute solutions using photon correlation spectroscopy—The influence of solvent quality
,”
Macromolecules
19
,
2002
2006
(
1986
).
5.
Li
,
J.
,
W.
Li
,
H.
Huo
,
S.
Luo
, and
C.
Wu
, “
Reexamination of the slow mode in semidilute polymer solutions: The effect of solvent quality
,”
Macromolecules
41
,
901
911
(
2008
).
6.
Zettl
,
U.
,
S. T.
Hoffmann
,
F.
Koberling
,
G.
Krausch
,
J.
Enderlein
,
L.
Harnau
, and
M.
Ballauff
, “
Self-diffusion and cooperative diffusion in semidilute polymer solutions as measured by fluorescence correlation spectroscopy
,”
Macromolecules
42
,
9537
9547
(
2009
).
7.
Takahashi
,
Y.
,
Y.
Isono
,
I.
Noda
, and
M.
Nagasawa
, “
Zero-shear viscosity of linear polymer solutions over a wide range of concentration
,”
Macromolecules
18
,
1002
1008
(
1985
).
8.
Takahashi
,
Y.
,
M.
Umeda
, and
I.
Noda
, “
Relaxation times of polymer solutions in the semidilute region for zero-shear viscosity
,”
Macromolecules
21
,
2257
2262
(
1988
).
9.
Raspaud
,
E.
,
D.
Lairez
, and
M.
Adam
, “
On the number of blobs per entanglement in semidilute and good solvent solution: Melt influence
,”
Macromolecules
28
,
927
933
(
1995
).
10.
Chow
,
A. W.
, and
G. G.
Fuller
, “
Rheooptical response of rodlike chains subject to transient shear flow. 1. Model calculations on the effects of polydispersity
,”
Macromolecules
18
,
786
793
(
1985
).
11.
Magda
,
J. J.
,
C. S.
Lee
,
S. J.
Müller
, and
R. G.
Larson
, “
Rheology, flow instabilities, and shear-induced diffusion in polystyrene solutions
,”
Macromolecules
26
,
1696
1706
(
1993
).
12.
Kume
,
T.
,
T.
Hattori
, and
T.
Hashimoto
, “
Time evolution of shear-induced structures in semidilute polystyrene solutions
,”
Macromolecules
30
,
427
434
(
1997
).
13.
Fuller
,
G. G.
, and
L. G.
Leal
, “
Flow birefringence of concentrated polymer solutions in two-dimensional flows
,”
J. Polym. Sci. Polym. Phys. Ed.
19
,
557
587
(
1981
).
14.
Ng
,
R. C.-Y.
, and
L. G.
Leal
, “
Concentration effects on birefringence and flow modification of semidilute polymer solutions in extensional flows
,”
J. Rheol.
37
,
443
468
(
1993
).
15.
Dunlap
,
P. N.
, and
L. G.
Leal
, “
Dilute polystyrene solutions in extensional flows: Birefringence and flow modification
,”
J. Non-Newtonian Fluid Mech.
23
,
5
48
(
1987
).
16.
Odell
,
J. A.
,
A.
Keller
, and
A. J.
Müller
, “
Extensional flow behavior of macromolecules in solution
,” in
Polymers in Aqueous Media
(
American Chemical Society
,
Washington DC
,
1989
), Chap. 12, pp.
193
244
.
17.
Clasen
,
C.
,
J. P.
Plog
,
W.-M.
Kulicke
,
M.
Owens
,
C.
Macosko
,
L. E.
Scriven
,
M.
Verani
, and
G. H.
McKinley
, “
How dilute are dilute solutions in extensional flows?
,”
J. Rheol.
50
,
849
881
(
2006
).
18.
Chow
,
A.
,
A.
Keller
,
A. J.
Müller
, and
J. A.
Odell
, “
Entanglements in polymer solutions under elongational flow: A combined study of chain stretching, flow velocimetry and elongational viscosity
,”
Macromolecules
21
,
250
256
(
1988
).
19.
Tirtaatmadja
,
V.
, and
T.
Sridhar
, “
A filament stretching device for measurement of extensional viscosity
,”
J. Rheol.
37
,
1081
1102
(
1993
).
20.
James
,
D. F.
, and
T.
Sridhar
, “
Molecular conformation during steady-state measurements of extensional viscosity
,”
J. Rheol.
39
,
713
724
(
1995
).
21.
Batchelor
,
G. K.
, “
The stress generated in a non-dilute suspension of elongated particles by pure straining motion
,”
J. Fluid Mech.
46
,
813
829
(
1971
).
22.
Harrison
,
G. M.
,
J.
Remmelgas
, and
L. G.
Leal
, “
Comparison of dumbell-based theory and experiment for a dilute polymer solution in a corotating two-roll mill
,”
J. Rheol.
43
,
197
218
(
1999
).
23.
Stoltz
,
C.
,
J. J.
de Pablo
, and
M. D.
Graham
, “
Concentration dependence of shear and extensional rheology of polymer solutions: Brownian dynamics simulations
,”
J. Rheol.
50
,
137
167
(
2006
).
24.
Shaqfeh
,
E. S. G.
, “
The dynamics of single-molecule DNA in flow
,”
J. Non-Newtonian Fluid Mech.
94
,
1
28
(
2005
).
25.
Chirico
,
G.
,
P.
Crisafulli
, and
G.
Baldini
, “
Dynamic light scattering of DNA: Role of the internal motion
,”
Il Nuovo Cimento D
11
,
745
759
(
1989
).
26.
Langowski
,
J.
, “
Salt effects on internal motions of superhelical and linear puc8 DNA: Dynamic light scattering studies
,”
Biophys. Chem.
27
,
263
271
(
1987
).
27.
Heo
,
Y.
, and
R. G.
Larson
, “
The scaling of zero-shear viscosities of semidilute polymer solutions with concentration
,”
J. Rheol.
49
,
1117
1128
(
2005
).
28.
Pan
,
S.
,
D.
At Nguyen
,
T.
Sridhar
,
P.
Sunthar
, and
J.
Ravi Prakash
, “
Universal solvent quality crossover of the zero shear rate viscosity of semidilute DNA solutions
,”
J. Rheol.
58
,
339
368
(
2014
).
29.
Smith
,
D. E.
,
T. T.
Perkins
, and
S.
Chu
, “
Dynamical scaling of DNA diffusion coefficients
,”
Macromolecules
29
,
1372
1373
(
1996
).
30.
Huang
,
C.-C.
,
R. G.
Winkler
,
G.
Sutmann
, and
G.
Gompper
, “
Semidilute polymer solutions at equilibrium and under shear flow
,”
Macromolecules
43
,
10107
10116
(
2010
).
31.
Jain
,
A.
,
P.
Sunthar
,
B.
Dünweg
, and
J. R.
Prakash
, “
Optimization of a Brownian dynamics algorithm for semidilute polymer solutions
,”
Phys. Rev. E
85
,
066703
(
2012
).
32.
Saadat
,
A.
, and
B.
Khomami
, “
Matrix-free Brownian dynamics simulation technique for semidilute polymeric solutions
,”
Phys. Rev. E
92
,
033307
(
2015
).
33.
Perkins
,
T. T.
,
S. R.
Quake
,
D. E.
Smith
, and
S.
Chu
, “
Relaxation of a single DNA molecule observed by optical microscopy
,”
Science
264
,
822
826
(
1994
).
34.
Perkins
,
T. T.
,
D. E.
Smith
,
R. G.
Larson
, and
S.
Chu
, “
Stretching of a single tethered polymer in a uniform flow
,”
Science
268
,
83
87
(
1995
).
35.
Perkins
,
T. T.
,
D. E.
Smith
, and
S.
Chu
, “
Single polymer dynamics in an elongational flow
,”
Science
276
,
2016
2021
(
1997
).
36.
Smith
,
D. E.
,
H. P.
Babcock
, and
S.
Chu
, “
Single polymer dynamics in steady shear flow
,”
Science
283
,
1724
1727
(
1999
).
37.
Kantsler
,
V.
, and
R. E.
Goldstein
, “
Fluctuations, dynamics, and the stretch-coil transition of single actin filaments in extensional flows
,”
Phys. Rev. Lett.
108
,
038103
(
2012
).
38.
Smith
,
D. E.
, and
S.
Chu
, “
Response of flexible polymers to a sudden elongational flow
,”
Science
281
,
1335
1340
(
1998
).
39.
Schroeder
,
C. M.
,
H. P.
Babcock
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Observation of polymer conformation hysteresis in extensional flow
,”
Science
301
,
1515
1519
(
2003
).
40.
Schroeder
,
C. M.
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Effect of hydrodynamic interactions on DNA dynamics in extensional flow: A simulation and single molecule experiment
,”
Macromolecules
37
,
9242
9256
(
2004
).
41.
Hur
,
J. S.
,
E. S. G.
Shaqfeh
,
H. P.
Babcock
,
D. E.
Smith
, and
S.
Chu
, “
Dynamics of dilute and semidilute DNA solutions in the start-up of shear flow
,”
J. Rheol.
45
,
421
450
(
2001
).
42.
Babcock
,
H. P.
,
D. E.
Smith
,
J. S.
Hur
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Relating the microscopic and macroscopic response of a polymeric fluid in a shearing flow
,”
Phys. Rev. Lett.
85
,
2018
2021
(
2000
).
43.
Teixeira
,
R. E.
,
A. K.
Dambal
,
D. H.
Richter
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
The individualistic dynamics of entangled DNA in solution
,”
Macromolecules
40
,
2461
2476
(
2007
).
44.
Harasim
,
M.
,
B.
Wunderlich
,
O.
Peleg
,
M.
Kröger
, and
A. R.
Bausch
, “
Direct observation of the dynamics of semiflexible polymers in shear flow
,”
Phys. Rev. Lett.
110
,
108302
(
2013
).
45.
Huber
,
B.
,
M.
Harasim
,
B.
Wunderlich
,
M.
Kröger
, and
A. R.
Bausch
, “
Microscopic origin of the non-Newtonian viscosity of semiflexible polymer solutions in the semidilute regime
,”
ACS Macro Lett.
3
,
136
140
(
2014
).
46.
Sasmal
,
C.
,
K.-W.
Hsiao
,
C. M.
Schroeder
, and
J.
Ravi Prakash
, “
Parameter-free prediction of DNA dynamics in planar extensional flow of semidilute solutions
,”
J. Rheol.
61
,
169
186
(
2016
).
47.
DeGennes
,
P. G.
,
Scaling Concepts in Polymer Physics
(
Cornell University
,
Ithaca
,
1979
).
48.
Pincus
,
P.
, “
Excluded volume effects and stretched polymer chains
,”
Macromolecules
9
,
386
388
(
1976
).
49.
Prabhakar
,
R.
,
S.
Gadkari
,
T.
Gopesh
, and
M. J.
Shaw
, “
Influence of stretching induced self-concentration and self-dilution on coil-stretch hysteresis and capillary thinning of unentangled polymer solutions
,”
J. Rheol.
60
,
345
366
(
2016
).
50.
Tanyeri
,
M.
,
M.
Ranka
,
N.
Sittipolkul
, and
C. M.
Schroeder
, “
A microfluidic-based hydrodynamic trap: Design and implementation
,”
Lab Chip
11
,
1786
1794
(
2011
).
51.
Pan
,
S.
, Double-stranded DNA as a model polymer: Validation through rheological characterization, Ph.D. thesis,
Monash University
,
Australia
,
2014
.
52.
Öttinger
,
H. C.
,
Stochastic Processes in Polymeric Fluids. Tools and Examples for Developing Simulation Algorithms
(
Springer
,
Berlin
,
1996
).
53.
Tsortos
,
A.
,
G.
Papadakis
, and
E.
Gizeli
, “
The intrinsic viscosity of linear DNA
,”
Biopolymers
95
,
824
832
(
2011
).
54.
Liu
,
Y.
,
Y.
Jun
, and
V.
Steinberg
, “
Concentration dependence of the longest relaxation times of dilute and semi-dilute polymer solutions
,”
J. Rheol.
53
,
1069
1085
(
2009
).
55.
Pan
,
S.
,
D.
Ahirwal
,
D.
At Nguyen
,
T.
Sridhar
,
P.
Sunthar
, and
J. R.
Prakash
, “
Viscosity radius of polymers in dilute solutions: Universal behavior from DNA rheology and Brownian dynamics simulations
,”
Macromolecules
47
,
7548
7560
(
2014
).
56.
Tree
,
D. R.
,
A.
Muralidhar
,
P. S.
Doyle
, and
K. D.
Dorfman
, “
Is DNA a good model polymer?
,”
Macromolecules
46
,
8369
8382
(
2013
).
57.
Nepal
,
M.
,
A.
Yaniv
,
E.
Shafran
, and
O.
Krichevsky
, “
Structure of DNA coils in dilute and semidilute solutions
,”
Phys. Rev. Lett.
110
,
058102
(
2013
).
58.
Bird
,
R. B.
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids—Volume 2 Kinetic Theory
(
Wiley
,
New York
,
1977
).
59.
Hernández Cifre
,
J. G.
, and
J.
Garćia de la Torre
, “
Kinetic aspects of the coil-stretch transition of polymer chains in dilute solution under extensional flow
,”
J. Chem. Phys.
115
,
9578
9584
(
2001
).
You do not currently have access to this content.