The structural anisotropy and shear rheology of colloidal gels under startup of shear flow are calculated by Brownian dynamics simulations modified to include particle surface-mediated attractions, which is a model for thermoreversible colloidal gels. Shear-induced structural changes are analyzed in both real and reciprocal space through computation of the pair distribution function and structure factor. A distinct structural anisotropy is evident as alignment along the compressional and vorticity axes. A spherical harmonics expansion of pair distribution function is calculated to analyze structural anisotropy. In reciprocal space, structural anisotropy is quantified through an alignment factor, which shows overshoot behavior similar to the stresses. Based on the microstructure analysis, the evolution of the structural anisotropy is explained by the anisotropic rupture of the colloidal gel microstructure. This result provides evidence for how shearing creates structural anisotropy. The structural anisotropy during flow startup is quantitatively related to rheological behavior via a stress-small angle neutron scattering (SANS) rule that is modified to consider the influence of the rupture of the colloidal gel structure. A simple structure kinetic equation accounting for bond creation and rupture provides a unifying view of the results. This new, modified stress-SANS rule quantitatively links the shear-induced structural anisotropy to the nonlinear rheology.

1.
Lu
,
P. J.
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
453
,
499
504
(
2008
).
2.
Zaccarelli
,
E.
, “
Colloidal gels: Equilibrium and non-equilibrium routes
,”
J. Phys.: Condens. Matter
19
,
323101
(
2007
).
3.
Hsiao
,
L. C.
,
R. S.
Newman
,
S. C.
Glotzer
, and
M. J.
Solomon
, “
Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels
,”
PNAS
109
(
40
),
16029
16034
(
2012
).
4.
Park
,
J. D.
, and
K. H.
Ahn
, “
Sturctural evolution of colloidal gels at intermediate volume fraction under startup of shear flow
,”
Soft Matter
9
,
11650
11662
(
2013
).
5.
Park
,
J. D.
,
S. J.
Lee
, and
K. H.
Ahn
, “
Structural change and dynamics of colloidal gels under oscillatory shear flow
,”
Soft Matter
11
,
9262
9272
(
2015
).
6.
Koumakis
,
N.
, and
G.
Petekidis
, “
Two step yielding in attractive colloids: Transition from gels to attractive glasses
,”
Soft Matter
7
,
2456
2470
(
2011
).
7.
Bonn
,
D.
,
J.
Paredes
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,” e-print arXiv:1502.05281v1.
8.
Kim
,
J. M.
,
A. R.
Eberle
,
A. K.
Gurnon
,
L.
Pocar
, and
N. J.
Wagner
, “
The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)
,”
J. Rheol.
58(5)
,
1301
1328
(
2014
).
9.
Gopalakrishnan
,
V.
, and
C. F.
Zukoski
, “
Delayed flow in thermo-reversible colloidal gels
,”
J. Rheol.
51
(
4
),
623
644
(
2007
).
10.
Woutersen
,
A.
,
R. P.
May
, and
C. G.
Dekruif
, “
The shear-distorted microstructure of adhesive hard-sphere dispersions: A small-angle neutron-scattering study
,”
J. Rheol.
37
(
1
),
71
88
(
1993
).
11.
Varadan
,
P.
, and
M. J.
Solomon
, “
Shear-induced microstructural evolution of a thermoreversible colloidal gel
,”
Langmuir
17
(
10
),
2918
2929
(
2001
).
12.
Hoekstra
,
H.
,
J.
Mewis
,
T.
Narayanan
, and
J.
Vermant
, “
Multi length scale analysis of the microstructure in sticky sphere dispersions during shear flow
,”
Langmuir
21
(
24
),
11017
11025
(
2005
).
13.
Eberle
,
A. P. R.
,
N.
Martys
,
L.
Porcar
,
S.
Kline
,
J. M.
Kim
,
P. D.
Butler
,
N.
Valadez
,
R.
Castaneda-Priego
, and
N. J.
Wagner
, “
Shear viscosity and structural scaling in model adhesive hard-sphere gels
,”
Phys. Rev. E
89
(
5
),
050302(R)
(
2014
).
14.
Hoekstra
,
H.
,
J.
Vermant
, and
J.
Mewis
, “
Flow-induced anisotropy and reversible aggregation in two-dimensional suspensions
,”
Langmuir
19
(
22
),
9134
9141
(
2003
).
15.
Masschaele
,
K.
,
J.
Fransaer
, and
J.
Vermant
, “
Flow-induced structure in colloidal gels: Direct visualization of model 2D suspensions
,”
Soft Matter
7
,
7717
7726
(
2011
).
16.
Koumakis
,
N.
,
E.
Moghimi
,
R.
Besseling
,
W. C. K.
Poon
,
J. F.
Brady
, and
G.
Petekidis
, “
Tuning colloidal gels by shear
,”
Soft Matter
11
,
4640
4648
(
2015
).
17.
Foss
,
D. R.
, and
J. F.
Brady
, “
Structure, diffusion, and rheology of Brownian suspensions by Stokesian dynamics simulation
,”
J. Fluid Mech.
407
,
167
200
(
2000
).
18.
Koumakis
,
N.
,
M.
Laurati
,
A. R.
Jacob
,
K. J.
Mutch
,
A.
Abdellali
,
A. B.
Schofield
,
S. U.
Egelhaaf
,
J. F.
Brady
, and
G.
Petekidis
, “
Start-up shear of concentrated colloidal hard spheres: Stresses, dynamics, and structure
,”
J. Rheol.
60
,
603
623
(
2016
).
19.
Lin
,
N. Y. C.
,
M.
Bierbaum
,
P.
Schall
,
J. P.
Sethna
, and
I.
Cohen
, “
Measuring nonlinear stresses generated by defects in 3D colloidal crystals
,”
Nat. Mater.
15
,
1172
1176
(
2016
).
20.
Mohraz
,
A.
, and
M. J.
Solomon
, “
Orientation and rupture of fractal colloidal gels during startup of steady shear flow
,”
J. Rheol.
49(3)
,
657
681
(
2005
).
21.
Seth
,
J. R.
,
L.
Mohan
,
C.
Locatelli-Champagne
,
M.
Cloitre
, and
R. T.
Bonnecaze
, “
A micro mechanical model to predict the flow of soft particle glasses
,”
Nat. Mater.
10
,
838
843
(
2011
).
22.
Mohan
,
L.
,
C.
Pellet
,
M.
Cloitre
, and
R. T.
Bonnecaze
, “
Local mobility and microstructure in periodically sheared soft particle glasses and their connection to macroscopic rheology
,”
J. Rheol.
57
(
3
),
1023
1046
(
2013
).
23.
Koumakis
,
N.
,
M.
Laurati
,
S. U.
Egelhaaf
,
J. F.
Brady
, and
G.
Petekidis
, “
Yielding of hard-sphere glasses during start-up shear
,”
Phys. Rev. Lett.
108
(
9
),
098303
(
2012
).
24.
Gurnon
,
A. K.
, and
N. J.
Wagner
, “
Microstructure and rheology relationship for shear thickening colloidal dispersions
,”
J. Fluid. Mech.
769
,
242
276
(
2015
).
25.
Gurnon
,
A. K.
,
C. R.
López-Barron
,
A. P. R.
Eberle
,
L.
Porcar
, and
N. J.
Wagner
, “
Spatiotemporal stress and structure evolution in dynamically sheared polymer-like micellar solutions
,”
Soft Matter
10
,
2889
2898
(
2014
).
26.
Helgeson
,
M. E.
,
P. A.
Vasquez
,
E. W.
Kaler
, and
N. J.
Wagner
, “
Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition
,”
J. Rheol.
53
(
3
),
727
756
(
2009
).
27.
Pignon
,
F.
,
A.
Magnin
, and
J. M.
Piau
, “
Butterfly light scattering pattern and rheology of a sheared thixotropic clay gel
,”
Phys. Rev. Lett.
79
(
23
),
4689
4692
(
1997
).
28.
Pignon
,
F.
,
A.
Magnin
, and
J. M.
Piau
, “
Thixotropic behavior of clay dispersions: Combinations of scattering and rheometric techniques
,”
J. Rheol.
42
(
6
),
1349
1373
(
1998
).
29.
Cheng
,
X.
,
X.
Xu
,
S. A.
Rice
,
A. R.
Dinner
, and
I.
Cohen
, “
Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow
,”
PNAS
109
(
17
),
63
67
(
2012
).
30.
Pantina
,
J. P.
, and
E. M.
Furst
, “
Elasticity and critical bending moment of model colloidal aggregates
,”
Phys. Rev. Lett.
94
(
13
),
138301
(
2005
).
31.
Whittle
,
M.
, and
E.
Dickinson
, “
Large deformation rheological behavior of a model particle gel
,”
J. Chem. Soc., Faraday Trans.
94
(
16
),
2453
2462
(
1998
).
32.
Whittle
,
M.
, and
E.
Dickinson
, “
Brownian dynamics simulation of gelation in soft sphere systems with irreversible bond formation
,”
Mol. Phys.
90
(
5
),
739
757
(
1997
).
33.
Allen
,
M.
, and
D.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University
,
Oxford
,
1987
).
34.
Tanaka
,
H.
, and
T.
Araki
, “
Simulation method of colloidal suspensions with hydrodynamic interactions: Fluid particle dynamics
,”
Phys. Rev. Lett.
85
(
6
),
1338
1341
(
2000
).
35.
Varga
,
Z.
, and
J.
Swan
, “
Hydrodynamic interactions enhance gelation in dispersions of colloids with short-ranged attraction and long-range repulsion
,”
Soft Matter
12
,
7670
7681
(
2016
).
36.
Hess
,
S.
, and
H. J. M.
Hanley
, “
Pressure tensor and viscosity coefficients of a soft sphere liquid under shear
,”
Int. J. Thermophys.
4
(
2
),
97
114
(
1983
).
37.
Wagner
,
N. J.
, and
B. J.
Ackerson
, “
Analysis of nonequlibrium structures of shearing colloidal suspensions
,”
J. Chem. Phys.
97
(
2
),
1473
1483
(
1992
).
38.
Hanley
,
H. J. M.
, and
J. C.
Rainwater
, “
Shear induced angular dependence of the liquid pair correlation function
,”
Phys. Rev. A
36
(
4
),
1795
1805
(
1987
).
39.
Rainwater
,
J. C.
,
H. J. M.
Hanley
, and
S.
Hess
, “
The static structure factor of a soft sphere liquid under shear
,”
Phys. Lett. A
126
(
8
),
450
454
(
1988
).
40.
López-Barrón
,
C. R.
,
A. K.
Gurnon
,
A. P. R.
Eberle
,
L.
Porcar
, and
N. J.
Wagner
, “
Microstructural evolution of a model, shear banding micellar solution during shear startup and cessation
,”
Phys. Rev. E
89
(
4
),
042301
(
2014
).
41.
Walker
,
L. M.
, and
N. J.
Wagner
, “
SANS analysis of the molecular order in poly/Deuterated Dimethylformamide under shear and during relaxation
,”
Macromolecules
29
(
6
),
2298
2301
(
1996
).
42.
Zia
,
R. N.
,
B. J.
Landrum
, and
W. B.
Russel
, “
A micro-mechanical study of coarsening and rheology of colloidal gels: Cage building, cage hopping, and Smoluchowski's ratchet
,”
J. Rheol.
58
(
5
),
1121
1157
(
2014
).
43.
Fielding
,
S. M.
,
P.
Solich
, and
M. E.
Cates
, “
Aging and rheology in soft materials
,”
J. Rheol.
44
(
2
),
323
369
(
2000
).
44.
Solich
,
P.
,
F.
Lequeux
,
P.
Hebraud
, and
M. E.
Cates
, “
Rheology of soft glassy materials
,”
Phys. Rev. Lett.
78
(
10
),
2020
2023
(
1997
).
45.
Solich
,
P.
, “
Rheological constitutive equation for a model of soft glassy materials
,”
Phys. Rev. E
58
(
1
),
738
759
(
1998
).
46.
Viasnoff
,
V.
, and
F.
Lequeux
, “
Rejuvenation and overaging in a colloidal glass under shear
,”
Phys. Rev. Lett.
89
(
6
),
065701
(
2002
).
47.
Viasnoff
,
V.
,
S.
Jurine
, and
F.
Lequeux
, “
How are colloidal suspensions that age rejuvenated by strain application?
,”
Faraday Discuss.
123
,
253
266
(
2003
).
48.
Yin
,
G.
, and
M. J.
Solomon
, “
Soft glassy rheology model applied to stress relaxation of a thermoreversible colloidal gel
,”
J. Rheol.
52
(
3
),
785
800
(
2008
).
49.
Morris
,
J. F.
, and
B.
Katyal
, “
Microstrucrure from simulated Brownian suspension flows at large shear rate
,”
Phys. Fluid
14
(
6
),
1920
1937
(
2002
).
50.
Xu
,
B.
, and
J. F.
Gilchrist
, “
Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions
,”
J. Chem. Phys.
140
(
20
),
204903
(
2014
).
51.
Dhont
,
J. K. G.
,
An Introduction to Dynamics of Colloids
(
Elsevier
,
Amsterdam
,
2003
).
52.
Gurnon
,
A. K.
,
M. J.
Wasbrough
,
C. R.
Lopez-Barron
,
L.
Porcar
, and
N. J.
Wagner
, “
Spatially resolved concentration and segmental flow alignment in a shear-banding solution of polymer-like micelles
,”
ACS Macro. Lett.
3(3)
,
276
280
(
2014
).
53.
de Souza Mendes
,
P. R.
, “
Modeling the thixotropic behavior of structured fluids
,”
J. Non-Newtonian Fluid Mech.
164
,
66
75
(
2009
).
54.
Dullaert
,
K.
, and
J.
Mewis
, “
A structural kinetics model for thixotropy
,”
J. Non-Newtonian Fluid Mech.
139
,
21
30
(
2006
).
55.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University
,
Cambridge
,
2012
).
56.
Goodeve
,
C. F.
, “
A general theory of thixotropy and viscosity
,”
Trans. Faraday Soc.
35
,
342
358
(
1939
).
You do not currently have access to this content.