The addition of acrylate polymers with low molecular weight, such as poly(isobutyl methacrylate) (PIBM) and poly(methyl methacrylate) (PMMA), effectively enhances the force required to stretch a molten polypropylene (PP) at the nonisothermal condition without the enhancement of shear viscosity in the molten state. The mechanism of this phenomenon is found to be attributed to prompt solidification of PIBM and PMMA droplets, which deform greatly to the flow direction in the die land and near the die exit during the extrusion and stretching processes. After the die exit, the deformed droplets show the glassification prior to the crystallization of PP matrix because of the rapid cooling at stretching. Consequently, they behave like rigid fibers in a molten PP, which provide the excess stress by large shear deformation of the matrix between the dispersed glassy fibers during stretching.

1.
Meissner
,
J.
, “
Dehnungsverhalten von polyäthylen-schmelzen
,”
Rheol. Acta
10
,
230
242
(
1971
).
2.
McLeish
,
T. C. B.
, and
R. G.
Larson
, “
Molecular constitutive equations for a class of branched polymers: The pom-pom polymer
,”
J. Rheol.
42
,
81
110
(
1998
).
3.
Wagner
,
M. H.
,
H.
Bastian
,
A.
Bernnat
,
S.
Kurzbeck
, and
C.
Chai
, “
Determination of elongational viscosity of polymer melts by RME and rheotens experiments
,”
Rheol. Acta
41
,
316
325
(
2002
).
4.
Sentmanat
,
M.
, “
Miniature universal testing platform: From extensional melt rheology to solid-state deformation behavior
,”
Rheol. Acta
43
,
657
669
(
2004
).
5.
Münstedt
,
H.
, and
D.
Auhl
, “
Rheological measuring techniques and their relevance for the molecular characterization of polymers
,”
J. Non-Newtonian Fluid Mech.
128
,
62
69
(
2005
).
6.
Nielsen
,
J. K.
,
H. K.
Rasmussen
,
O.
Hassager
, and
G. H.
McKinley
, “
Elongational viscosity of monodisperse and bidisperse polystyrene melts
,”
J. Rheol.
50
,
453
476
(
2006
).
7.
Hawke
,
L. G. D.
,
Q.
Huang
,
O.
Hassager
, and
D. J.
Read
, “
Modifying the pom-pom model for extensional viscosity overshoots
,”
J. Rheol.
59
,
995
1017
(
2015
).
8.
Linster
,
J. J.
, and
J.
Meissner
, “
Melt elongation and structure of linear polyethylene (HDPE)
,”
Polym. Bull.
16
,
187
194
(
1986
).
9.
Sugimoto
,
M.
,
Y.
Masubuchi
,
J.
Takimoto
, and
K.
Koyama
, “
Melt rheology of polypropylene containing small amounts of high-molecular-weight chain. 2. Uniaxial and biaxial extensional flow
,”
Macromolecules
34
,
6056
6063
(
2001
).
10.
Meissner
,
J.
, “
Basic parameters, melt rheology, processing and end-use properties of three similar low density polyethylene samples
,”
Pure Appl. Chem.
42
,
551
621
(
1975
).
11.
Yamaguchi
,
M.
, and
M.
Takahashi
, “
Rheological properties of low-density polyethylenes produced by tubular and vessel processes
,”
Polymer
42
,
8663
8670
(
2001
).
12.
Ye
,
Z.
,
F.
Al Obaidi
, and
S.
Zhu
, “
Synthesis and rheological properties of long-chain-branched isotactic polypropylenes prepared by copolymerization of propylene and nonconjugated dienes
,”
Ind. Eng. Chem. Res.
43
,
2860
2870
(
2004
).
13.
Langston
,
J. A.
,
R. H.
Colby
,
T. C. M.
Chung
,
F.
Shimizu
,
T.
Suzuki
, and
M.
Aoki
, “
Synthesis and characterization of long chain branched isotactic polypropylene via metallocene catalyst and T-reagent
,”
Macromolecules
40
,
2712
2720
(
2007
).
14.
Phillips
,
E. M.
,
K. E.
Mchugh
,
K.
Ogale
, and
M. B.
Bradley
, “
Polypropylene with high melt stability
,”
Kunst. Ger. Plast.
82
,
23
24
(
1992
).
15.
Hingmann
,
R.
, and
B. L.
Marczinke
, “
Shear and elongational flow properties of polypropylene melts
,”
J. Rheol.
38
,
573
587
(
1994
).
16.
Yoshii
,
F.
,
K.
Makuuchi
,
S.
Kikukawa
,
T.
Tanaka
,
J.
Saitoh
, and
K.
Koyama
, “
High-melt-strength polypropylene with electron beam irradiation in the presence of polyfunctional monomers
,”
J. Appl. Polym. Sci.
60
,
617
623
(
1996
).
17.
Park
,
C. B.
, and
L. K.
Cheung
, “
A study of cell nucleation in the extrusion of polypropylene foams
,”
Polym. Eng. Sci.
37
,
1
10
(
1997
).
18.
Lau
,
H. C.
,
S. N.
Bhattacharya
, and
G. J.
Field
, “
Melt strength of polypropylene: Its relevance to thermoforming
,”
Polym. Eng. Sci.
38
,
1915
1923
(
1998
).
19.
Lagendijk
,
R. P.
,
A. H.
Hogt
,
A.
Buijtenhuijs
, and
A. D.
Gotsis
, “
Peroxydicarbonate modification of polypropylene and extensional flow properties
,”
Polymer
42
,
10035
10043
(
2001
).
20.
Auhl
,
D.
,
J.
Stange
,
H.
Münstedt
,
B.
Krause
,
D.
Voigt
,
A.
Lederer
,
U.
Lappan
, and
K.
Lunkwitz
, “
Long-chain branched polypropylenes by electron beam irradiation and their rheological properties
,”
Macromolecules
37
,
9465
9472
(
2004
).
21.
Spitael
,
P.
, and
C. W.
Macosko
, “
Strain hardening in polypropylenes and its role in extrusion foaming
,”
Polym. Eng. Sci.
44
,
2090
2100
(
2004
).
22.
Yamaguchi
,
M.
, and
M. H.
Wagner
, “
Impact of processing history on rheological properties for branched polypropylene
,”
Polymer
47
,
3629
3635
(
2006
).
23.
Stange
J.
, and
H.
Münstedt
, “
Rheological properties and foaming behavior of polypropylenes with different molecular structures
,”
J. Rheol.
50
,
907
923
(
2006
).
24.
Bradley
,
M. B.
, and
E. M.
Phillips
, “
Novel polypropylenes for foaming on conventional equipment
,”
Plast. Eng.
82
84
(
1991
).
25.
Yamaguchi
,
M.
,
D. B.
Todd
, and
C. G.
Gogos
, “
Rheological properties of LDPE processed by conventional processing machines
,”
Adv. Polym. Technol.
22
,
179
187
(
2003
).
26.
Doelder
,
J.
,
R.
Koopmans
,
M.
Dees
, and
M.
Mangnus
, “
Pressure oscillation and periodic extrudate distortion of long-chain branched polyolefins
,”
J. Rheol.
49
,
113
126
(
2005
).
27.
Siriprumpoonthum
,
M.
,
N.
Mieda
,
V. A.
Doan
,
S.
Nobukawa
, and
M.
Yamaguchi
, “
Effect of shear history on flow instability at capillary extrusion for long-chain branched polyethylene
,”
J. Appl. Polym. Sci.
124
,
429
435
(
2012
).
28.
Mewis
,
J.
, and
A. B.
Metzner
, “
The rheological properties of suspensions of fibres in Newtonian fluids subjected to extensional deformations
,”
J. Fluid Mech.
62
,
593
600
(
1974
).
29.
Chan
,
Y.
,
J. L.
White
, and
Y.
Oyanagi
, “
A fundamental study of the rheological properties of glass-fiber-reinforced polyethylene and polystyrene melts
,”
J. Rheol.
22
,
507
524
(
1978
).
30.
Kamal
,
M. R.
,
A. T.
Mutel
, and
L. A.
Utracki
, “
Elongational behavior of short glass fiber reinforced polypropylene melts
,”
Polym. Compos.
5
,
289
298
(
1984
).
31.
Laun
,
H. M.
, “
Orientation effects and rheology of short glass fiber-reinforced thermoplastics
,”
Colloid Polym. Sci.
262
,
257
269
(
1984
).
32.
Takahashi
,
T.
,
J.
Takimoto
, and
K.
Koyama
, “
Uniaxial elongational viscosity of various molten polymer composites
,”
Polym. Compos.
20
,
357
366
(
1999
).
33.
Thomasset
,
J.
,
P. J.
Carreau
,
B.
Sanschagrin
, and
G.
Ausias
, “
Rheological properties of long glass fiber filled polypropylene
,”
J. Non-Newtonian Fluid Mech.
125
,
25
34
(
2005
).
34.
Batchelor
,
G. K.
, “
The stress generated in a non-dilute suspension of elongated particles by pure straining motion
,”
J. Fluid Mech.
46
,
813
829
(
1971
).
35.
Yokohara
,
T.
,
S.
Nobukawa
, and
M.
Yamaguchi
, “
Rheological properties of polymer composites with flexible fine fibers
,”
J. Rheol.
55
,
1205
1218
(
2011
).
36.
Yamaguchi
,
M.
,
K.
Fukuda
,
T.
Yokohara
,
M. A. B. M.
Ali
, and
S.
Nobukawa
, “
Modification of rheological properties under elongational flow by addition of polymeric fine fibers
,”
Macromol. Mater. Eng.
297
,
654
658
(
2012
).
37.
Yamaguchi
,
M.
,
T.
Yokohara
, and
M. A.
Bin Md Ali
, “
Effect of flexible fibers on rheological properties of poly(lactic acid) composites under elongational flow
,”
J. Soc. Rheol. Jpn.
41
,
129
135
(
2013
).
38.
Rizvi
,
A.
,
C. B.
Park
, and
B. D.
Favis
, “
Tuning viscoelastic and crystallization properties of polypropylene containing in-situ generated high aspect ratio polyethylene terephthalate fibrils
,”
Polymer
68
,
83
91
(
2015
).
39.
Laun
,
H. M.
, and
H.
Schuch
, “
Transient elongational viscosities and drawability of polymer melts
,”
J. Rheol.
33
,
119
175
(
1989
).
40.
Bernnat
,
A.
, Polymer melt rheology and the rheotens test, Ph.D. thesis,
University of Stuttgart
,
Stuttgart, Germany
,
2001
.
41.
Muke
,
S.
,
I.
Ivanov
,
N.
Kao
, and
S. N.
Bhattacharya
, “
Extensional rheology of polypropylene melts from the rheotens test
,”
J. Non-Newtonian Fluid Mech.
101
,
77
93
(
2001
).
42.
Yamaguchi
,
M.
, “
Melt elasticity of polyolefins: Impact of elastic properties on foam processing
,” in
Polymeric Foam
(
CRC
,
New York
,
2004
).
43.
Münstedt
,
H.
,
T.
Steffl
, and
A.
Malmberg
, “
Correlation between rheological behaviour in uniaxial elongation and film blowing properties of various polyethylenes
,”
Rheol. Acta
45
,
14
22
(
2005
).
44.
Siriprumpoonthum
,
M.
,
S.
Nobukawa
,
Y.
Satoh
,
H.
Sasaki
, and
M.
Yamaguchi
, “
Effect of thermal modification on rheological properties of polyethylene blends
,”
J. Rheol.
58
,
449
466
(
2014
).
45.
Seemork
,
J.
,
M.
Siriprumpoonthum
,
Y.
Lee
,
S.
Nobukawa
, and
M.
Yamaguchi
, “
Effect of die geometry on drawdown force of polypropylene at capillary extrusion
,”
Adv. Polym. Technol.
34
,
21477
(
2015
).
46.
Seemork
,
J.
,
T.
Itoh
,
S.
Nobukawa
, and
M.
Yamaguchi
, “
Effect of crystallization on drawdown force at capillary extrusion for polyethylene
,”
J. Soc. Rheol. Jpn.
44
,
23
27
(
2016
).
47.
Min
,
K.
,
J. L.
White
, and
J. F.
Fellers
, “
High density polyethylene/polystyrene blends: Phase distribution morphology, rheological measurements, extrusion, and melt spinning behavior
,”
J. Appl. Polym. Sci.
29
,
2117
2142
(
1984
).
48.
Utracki
,
L. A.
, and
P.
Sammut
, “
On the uniaxial extensional flow of polystyrene/polyethylene blends
,”
Polym. Eng. Sci.
30
,
1019
1026
(
1990
).
49.
Hattori
,
T.
,
T.
Takigawa
, and
T.
Masuda
, “
Uniaxial and biaxial elongational flow of low density polyethylene/polystyrene blends
,”
J. Soc. Rheol. Jpn.
20
,
141
145
(
1992
).
50.
Gramespacher
,
H.
, and
J.
Meissner
, “
Melt elongation and recovery of polymer blends, morphology, and influence of interfacial tension
,”
J. Rheol.
41
,
27
44
(
1997
).
51.
Takahashi
,
T.
,
J.
Takimoto
, and
K.
Koyama
, “
Elongational vioscosity for miscible and immiscible polymer blends. 1. PMMA and PS with similar elongational viscosity
,”
J. Appl. Polym. Sci.
73
,
757
766
(
1999
).
52.
Handge
,
U. A.
, and
P.
Pötschke
, “
Interplay of rheology and morphology in melt elongation and subsequent recovery of polystyrene/poly(methyl methacrylate) blends
,”
J. Rheol.
48
,
1103
1122
(
2004
).
53.
Osaki
,
K.
,
A.
Murai
,
N.
Bessho
, and
B. S.
Kim
, “
Linear viscoelastic relation concerning shear stresses at the start and cessation of steady shear flow
,”
J. Soc. Rheol. Jpn.
4
,
166
169
(
1976
).
54.
Moynihan
,
C. T.
,
A. J.
Easteal
,
J.
Wilder
, and
J.
Tucker
, “
Dependence of the glass transition temperature on heating and cooling rate
,”
J. Phys. Chem.
78
,
2673
2677
(
1974
).
55.
Wasiak
,
A.
,
P.
Sajkiewicz
, and
A.
Woźniak
, “
Effects of cooling rate on crystallinity of i-polypropylene and polyethylene terephthalate crystallized in nonisothermal conditions
,”
J. Polym. Sci. Polym. Phys.
37
,
2821
2827
(
1999
).
56.
Buchholz
,
J.
,
W.
Paul
,
F.
Varnik
, and
K.
Binder
, “
Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study
,”
J. Chem. Phys.
117
,
7364
7372
(
2002
).
57.
Mark
,
J.
,
K.
Ngai
,
W.
Graessley
,
L.
Mandelkern
,
E.
Samulski
,
J.
Koenig
, and
G.
Wignall
,
Physical Properties of Polymers
(
Cambridge University
,
Cambridge
,
2004
).
58.
Gradys
,
A.
,
P.
Sajkiewicz
,
A. A.
Minakov
,
S.
Adamovsky
,
C.
Schick
,
T.
Hashimoto
, and
K.
Saijo
, “
Crystallization of polypropylene at various cooling rates
,”
Mater. Sci. Eng. A
413–414
,
442
446
(
2005
).
59.
Schawe
,
J. E. K.
, “
Analysis of non-isothermal crystallization during cooling and reorganization during heating of isotactic polypropylene by fast scanning DSC
,”
Thermochim. Acta
603
,
85
93
(
2015
).
60.
Mollova
,
A.
,
R.
Androsch
,
D.
Mileva
,
M.
Gahleitner
, and
S. S.
Funari
, “
Crystallization of isotactic polypropylene containing beta-phase nucleating agent at rapid cooling
,”
Eur. Polym. J.
49
,
1057
1065
(
2013
).
61.
Joo
,
Y. L.
,
J.
Sun
,
M. D.
Smith
,
R. C.
Armstrong
,
R. A.
Brown
, and
R. A.
Ross
, “
Two-dimensional numerical analysis of non-isothermal melt spinning with and without phase transition
,”
J. Non-Newtonian Fluid Mech.
102
,
37
70
(
2002
).
62.
Macosko
,
C. W.
,
Rheology: Principles, Measurements, and Applications
(
John Wiley & Sons
,
New York
,
1994
).
63.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
New York
,
1998
).
64.
Hayashi
,
R.
,
M.
Takahashi
,
H.
Yamane
,
H.
Jinnai
, and
H.
Watanabe
, “
Dynamic interfacial properties of polymer blends under large step strains: Shape recovery of a single droplet
,”
Polymer
42
,
757
764
(
2001
).
65.
Tucker
,
C. L.
, and
P.
Moldenaers
, “
Microstructural evolution in polymer blends
,”
Annu. Rev. Fluid Mech.
34
,
177
210
(
2002
).
66.
Manas-Zloczower
,
I.
,
Mixing and Compounding of Polymers: Theory and Practice
(
Carl Hanser
,
Munich
,
2009
).
67.
Weiss
,
R. A.
,
W.
Huh
, and
L.
Nicolais
, “
Novel reinforced polymers based on blends of polystyrene and a thermotropic liquid crystalline polymer
,”
Polym. Eng. Sci.
27
,
684
691
(
1987
).
68.
Dutta
,
D.
,
H.
Fruitwala
,
A.
Kohli
, and
R. A.
Weiss
, “
Polymer blends containing liquid crystals: A review
,”
Polym. Eng. Sci.
30
,
1005
1018
(
1990
).
69.
Tjong
,
S. C.
,
S. L.
Liu
, and
R. K. Y.
Li
, “
Mechanical properties of injection moulded blends of polypropylene with thermotropic liquid crystalline polymer
,”
J. Mater. Sci.
31
,
479
484
(
1996
).
70.
Odell
,
J. A.
,
D. T.
Grubb
, and
A.
Keller
, “
A new route to high modulus polyethylene by lamellar structures nucleated onto fibrous substrates with general implications for crystallization behavior
,”
Polymer
19
,
617
626
(
1978
).
71.
Barham
,
P. J.
, in
Structure and Morphology of Oriented Polymer, in Structure and Properties of Oriented Polymers
, 2nd ed., edited by
I. M.
Ward
(
Chapman & Hall
,
London
,
1997
).
72.
Tenma
,
M.
, and
M.
Yamaguchi
, “
Structure and properties of injection-molded polypropylene with sorbitol-based clarifier
,”
Polym. Eng. Sci.
47
,
1441
1446
(
2007
).
You do not currently have access to this content.