We study the necking of a filament of complex fluid or soft solid subject to uniaxial tensile stretching, separately under conditions of constant imposed tensile stress and constant imposed tensile force, by means of linear stability analysis and nonlinear simulations at the level of a slender filament approximation. We demonstrate necking to be a flow instability that arises as an unavoidable consequence of the viscoelastic constitutive behavior of essentially any material (with a possible rare exception). We derive criteria for the onset of necking that can be reported in terms of characteristic signatures in the shapes of the experimentally measured material functions, and that should therefore apply universally to all viscoelastic materials. To confirm their generality, we show them to hold numerically in six constitutive models: The Oldroyd B, Giesekus, nonstretch Rolie-Poly, finite-stretch Rolie-Poly and Pom-pom models, and a simplified toy model of coil-stretch hysteresis, which has a nonmonotonic underlying extensional constitutive curve. Under conditions of constant imposed tensile stress, we find two distinct dynamical regimes as a function of the time since the inception of the flow. In the first regime the strain rate quickly attains a value prescribed by the fluid's underlying stationary homogeneous extensional constitutive curve, at the given imposed stress. During this first regime, no appreciable (or only minimal) necking arises. A second regime then ensues in which the initial homogeneous flow destabilizes to form a neck. This necking instability can occur via two distinct possible modes. The first mode is relatively gentle and arises in any regime where the slope of the extensional constitutive curve is positive. It has a rate of necking per accumulated strain unit set by the inverse of the slope of the constitutive curve on a log-log plot. The second mode sets in when a carefully defined “elastic derivative” of the tensile force first slopes down as a function of the time (or accumulated strain) since the inception of the flow. We discuss the way in which these modes of instability manifest themselves in entangled polymeric fluids, demonstrating four distinct regimes of necking behavior as a function of imposed stress. Under conditions of constant imposed tensile force, typically the flow sweeps up the underlying constitutive curve of the fluid in question, again with instability to necking in any regime where that curve is positively sloping.

1.
McKinley
,
G. H.
, and
T.
Sridhar
, “
Filament-stretching rheometry of complex fluids
,”
Annu. Rev. Fluid Mech.
34
(
1
),
375
415
(
2002
).
2.
Mu¨nstedt
,
H.
, “
Viscoelasticity of polystyrene melts in tensile creep experiments
,”
Rheol. Acta
14
,
1077
1088
(
1975
).
3.
Mu¨nstedt
,
H.
, and
Z.
Starý
, “
Steady states in extensional flow of strain hardening polymer melts and the uncertainties of their determination
,”
J. Rheol.
57
(
4
),
1065
1077
(
2013
).
4.
Mu¨nstedt
,
H.
, “
Rheological experiments at constant stress as efficient method to characterize polymeric materials
,”
J. Rheol.
58
(
3
),
565
587
(
2014
).
5.
Kurzbeck
,
S.
,
F.
Oster
,
H.
Münstedt
,
T. Q.
Nguyen
, and
R.
Gensler
, “
Rheological properties of two polypropylenes with different molecular structure
,”
J. Rheol.
43
(
2
),
359
374
(
1999
).
6.
Laun
,
H. M.
, and
H.
Mu¨nstedt
, “
Comparison of the elongational behaviour of a polyethylene melt at constant stress and constant strain rate
,”
Rheol. Acta
15
,
517
524
(
1976
).
7.
Laun
,
H. M.
, and
H.
Mu¨nstedt
, “
Elongational behaviour of a low density polyethylene melt—I. Strain rate and stress dependence of viscosity and recoverable strain in the steady-state. Comparison with shear data. Influence of interfacial tension
,”
Rheol. Acta
17
,
415
425
(
1978
).
8.
Mu¨nstedt
,
H.
, and
D. W.
Auhl
, “
Rheological measuring techniques and their relevance for the molecular characterization of polymers
,”
J. Non-Newtonian Fluid Mech.
128
(
1
),
62
69
(
2005
).
9.
Mu¨nstedt
,
H.
, and
H. M.
Laun
, “
Elongational behaviour of a low density polyethylene melt—II. Transient behaviour in constant stretching rate and tensile creep experiments. Comparison with shear data. Temperature dependence of the elongational properties
,”
Rheol. Acta
18
,
492
504
(
1979
).
10.
Wolff
,
F.
,
J. A.
Resch
,
J.
Kaschta
, and
H.
Mu¨nstedt
, “
Prediction of steady-state viscous and elastic properties of polyolefin melts in shear and elongation
,”
Rheol. Acta
50
(
7–8
),
645
653
(
2011
).
11.
Alvarez
,
N. J.
,
J.
Marin
,
Q.
Huang
,
M.
Michelsen
, and
O.
Hassager
, “
Creep measurements confirm steady flow after stress maximum in extension of branched polymer melts
,”
Phys. Rev. Lett.
110
(
16
),
168301
(
2013
).
12.
Wagner
,
M. H.
,
H.
Bastian
,
A.
Bernnat
,
S.
Kurzbeck
, and
C. K.
Chai
, “
Determination of elongational viscosity of polymer melts by RME and Rheotens experiments
,”
Rheol. Acta
41
(
4
),
316
325
(
2002
).
13.
Szabo
,
P.
,
G. H.
McKinley
, and
C.
Clasen
, “
Constant force extensional rheometry of polymer solutions
,”
J. Non-Newtonian Fluid Mech.
169–170
,
26
41
(
2012
).
14.
Matta
,
J.
, and
R.
Tytus
, “
Liquid stretching using a falling cylinder
,”
J. Non-Newtonian Fluid Mech.
35
(
2–3
),
215
229
(
1990
).
15.
Raible
,
T.
, and
S.
Stephenson
, “
Constant force elongational flow of a low-density polyethylene melt—experiment and theory
,”
J. Non-Newtonian Fluid Mech.
11
,
239
256
(
1982
).
16.
Wagner
,
M. H.
, and
V. H.
Rolón-Garrido
, “
Constant force elongational flow of polymer melts: Experiment and modelling
,”
J. Rheol.
56
,
1279
1297
(
2012
).
17.
Fielding
,
S. M.
, “
Criterion for extensional necking instability in polymeric fluids
,”
Phys. Rev. Lett.
107
(
25
),
258301
(
2011
).
18.
Hoyle
,
D. M.
, and
S. M.
Fielding
, “
Criteria for extensional necking instability in complex fluids and soft solids. Part I: Imposed Hencky strain rate protocols
,”
J. Rheol.
60
,
1347
(
2016
).
19.
Barroso
,
V. C.
, and
J. M.
Maia
, “
Influence of long-chain branching on the rheological behavior of polyethylene in shear and extensional flow
,”
Polym. Eng. Sci.
45
(
7
),
984
997
(
2005
).
20.
Liu
,
G.
,
H.
Ma
,
H.
Lee
,
H.
Xu
,
S.
Cheng
,
H.
Sun
,
T.
Chang
,
R. P.
Quirk
, and
S.-Q.
Wang
, “
Long-chain branched polymers to prolong homogeneous stretching and to resist melt breakup
,”
Polymer
54
(
24
),
6608
6616
(
2013
).
21.
Burghelea
,
T. I.
,
Z.
Stary
, and
H.
Mu¨nstedt
, “
On the “viscosity overshoot” during the uniaxial extension of a low density polyethylene
,”
J. Non-Newtonian Fluid Mech.
166
(
19–20
),
1198
1209
(
2011
).
22.
Tripathi
,
A.
,
K. C.
Tam
, and
G. H.
McKinley
, “
Rheology and dynamics of associate polymer solutions in shear and extension: Theory and experiments
,”
Macromolecules
39
,
1981
1999
(
2006
).
23.
Bhardwaj
,
A.
,
E.
Miller
, and
J. P.
Rothstein
, “
Filament stretching and capillary breakup extensional rheometry measurements of viscoelastic wormlike micelle solutions
,”
J. Rheol.
51
,
693
719
(
2007
).
24.
Arciniaga
,
M.
,
C.-C.
Kuo
, and
M.
Dennin
, “
Size dependent brittle to ductile transition in bubble rafts
,”
Colloids Surf. A
382
(
1–3
),
36
41
(
2011
).
25.
Smith
,
M. I.
,
R.
Besseling
,
M. E.
Cates
, and
V.
Bertola
, “
Dilatancy in the flow and fracture of stretched colloidal suspensions
,”
Nat. Commun.
1
(
8
),
114
(
2010
).
26.
Andrade
,
R. J.
, and
J. M.
Maia
, “
A study on the flow, failure, and rupture mechanisms of low-density polyethylene in controlled-stress uniaxial extensional flow
,”
J. Rheol.
55
(
5
),
925
937
(
2011
).
27.
Malkin
,
A. Y.
,
A.
Arinstein
, and
V. G.
Kulichikhin
, “
Polymer extension flows and instabilities
,”
Prog. Polym. Sci.
39
(
5
),
959
978
(
2014
).
28.
Wang
,
Y.
,
P.
Boukany
,
S.-Q.
Wang
, and
X.
Wang
, “
Elastic breakup in uniaxial extension of entangled polymer melts
,”
Phys. Rev. Lett.
99
,
1
4
(
2007
).
29.
Considère
,
M.
, “
Memoire sur l'emploi du fer et de l'acier dans les constructions
,”
Ann. Ponts Chaussees
9
,
574
775
(
1885
).
30.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworth, Stoneham
,
1988
).
31.
Likhtman
,
A. E.
, and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation
,”
J. Non-Newtonian Fluid Mech.
114
(
1
),
1
12
(
2003
).
32.
Blackwell
,
R. J.
,
T. C. B.
McLeish
, and
O. G.
Harlen
, “
Molecular drag-strain coupling in branched polymer melts
,”
J. Rheol.
44
(
1
),
121
136
(
2000
).
33.
McLeish
,
T. C. B.
, and
R. G.
Larson
, “
Molecular constitutive equations for a class of branched polymers: The pom-pom polymer
,”
J. Rheol.
42
,
81
110
(
1998
).
34.
Somani
,
S.
,
E. S. G.
Shaqfeh
, and
J. R.
Prakash
, “
Effect of solvent quality on the coil-stretch transition
,”
Macromolecules
43
(
24
),
10679
10691
(
2010
).
35.
Schroeder
,
C. M.
, “
Observation of polymer conformation hysteresis in extensional flow
,”
Science
301
(
5639
),
1515
1519
(
2003
).
36.
De Gennes
,
P. G.
, “
Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients
,”
J. Chem. Phys.
60
(
12
),
5030
5042
(
1974
).
37.
Clasen
,
C.
,
J.
Eggers
,
M. A.
Fontelos
,
J.
Li
, and
G. H.
McKinley
, “
The beads-on-string structure of viscoelastic threads
,”
J. Fluid Mech.
556
,
283
308
(
2006
).
38.
Tembely
,
M.
,
D. C.
Vadillo
,
M. R.
Mackley
, and
A.
Soucemarianadin
, “
The matching of a “one-dimensional” numerical simulation and experiment results for low viscosity Newtonian and non-Newtonian fluids during fast filament stretching and subsequent break-up
,”
J. Rheol.
56
(
1
),
159
183
(
2012
).
39.
Vadillo
,
D. C.
,
M.
Tembely
,
N. F.
Morrison
,
O. G.
Harlen
,
M. R.
Mackley
, and
A.
Soucemarianadin
, “
The matching of polymer solution fast filament stretching, relaxation, and break up experimental results with 1D and 2D numerical viscoelastic simulation
,”
J. Rheol.
56
(
6
),
1491
1516
(
2012
).
40.
Webster
,
M. F.
,
H.
Matallah
,
K.
Sujatha
, and
M. J.
Banaai
, “
Numerical modelling of step-strain for stretched filaments
,”
J. Non-Newtonian Fluid Mech.
151
,
38
58
(
2008
).
41.
McIlroy
,
C.
, and
O. G.
Harlen
, “
Modelling capillary break-up of particulate suspensions
,”
Phys. Fluids
26
(
3
),
033101
(
2014
).
42.
Bhat
,
P. P.
,
O. A.
Basaran
, and
M.
Pasquali
, “
Dynamics of viscoelastic liquid filaments: Low capillary number flows
,”
J. Non-Newtonian Fluid Mech.
150
,
211
225
(
2008
).
43.
Doi
,
M.
, and
S.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
Oxford
,
1986
).
44.
Marrucci
,
G.
, “
Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule
,”
J. Non-Newtonian Fluid Mech.
62
(
2–3
),
279
289
(
1996
).
45.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Convective constraint release (CCR) revisited
,”
J. Rheol.
58
(
1
),
89
102
(
2014
).
46.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Do repeated shear startup runs of polymeric liquids reveal structural changes?
,”
ACS Macro Lett.
3
(
6
),
552
555
(
2014
).
47.
Cates
,
M. E.
, “
Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers)
,”
J. Phys. Chem.
94
(
1
),
371
375
(
1990
).
48.
Forest
,
M. G.
, and
Q.
Wang
, “
Change-of-type behavior in viscoelastic slender jet models
,”
Theor. Comput. Fluid Dyn.
2
(
1
),
1
25
(
1990
).
49.
Olagunju
,
D. O.
, “
A 1-D theory for extensional deformation of a viscoelastic filament under exponential stretching
,”
J. Non-Newtonian Fluid Mech.
87
,
27
46
(
1999
).
50.
Denn
,
M. M.
,
C. J. S.
Petrie
, and
P.
Avenas
, “
Mechanics of steady spinning of a viscoelastic liquid
,”
AIChE J.
21
(
4
),
791
799
(
1975
).
51.
Press
,
W. H.
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed. (
Cambridge University
,
New York
,
2007
).
52.
Hoyle
,
D. M.
, and
S. M.
Fielding
, “
Age-dependent modes of extensional necking instability in soft glassy materials
,”
Phys. Rev. Lett.
114
(
15
),
158301
(
2015
).
You do not currently have access to this content.