The pressure dependence of viscosity of two nanocomposites with a polystyrene (PS) matrix that contains, respectively, multiwalled carbon nanotubes (MWCNTs) and graphene, was investigated. Two procedures were used: (a) Pressure-volume-temperature (PVT) results to obtain the pressure coefficient β0 for Newtonian viscosity and (b) measurements in a pressure chamber in a capillary rheometer, to obtain the pressure coefficient at constant shear rate, β′ and the pressure coefficient at constant shear stress, β″. PVT results revealed that the most significant differences between the samples concerned the variation of the glass transition with pressure, dTg/dP, which was concomitant with the number of polymer chains fixed on the surface of the nanofillers. Pressure chamber results showed that the pressure coefficient β″ was similar for PS and the nanocomposites, at the shear rates involved in processing. For the first time, the piezorheological complexity of nanocomposites was analyzed, together with the thermorheological complexity. PS/MWCNT nanocomposite was thermorheologically complex in the linear viscoelastic regime, but thermorheologically and piezorheologically simple in the shear thinning flow region. Nevertheless, PS/graphene nanocomposite was thermorheologically and piezorheologically complex in the linear viscoelastic regime and the shear thinning regime. This was due to the high capacity of graphene 2D platelets to retain polymer chains anchored to its surface.

1.
Miller
,
A. A.
, “
Pressure coefficients for Newtonian viscosity of polymer liquids
,”
Macromolecules
4
,
757
761
(
1971
).
2.
Miller
,
A. A.
, “
Mobilities of polymer liquids at constant temperature and at constant volume
,”
Polymer
19
,
899
904
(
1978
).
3.
Godbart
,
P. H.
, and
R. S.
Porter
, “
A comparison of equations for the effect of pressure on the viscosity of amorphous polymers
,”
J. Appl. Polym. Sci.
20
,
1199
1208
(
1976
).
4.
Izu
,
P.
,
M. E.
Muñoz
,
J. J.
Peña
, and
A.
Santamaria
, “
Effect of pressure on thermorheology and viscosity of PS and two LC polymers
,”
Prog. Colloid Polym. Sci.
87
,
63
66
(
1992
).
5.
Kadijk
,
S.
, and
B.
Van den Brule
, “
On the pressure dependency of the viscosity of molten polymers
,”
Polym. Eng. Sci.
34
,
1535
1546
(
1994
).
6.
Hatziriakos
,
S. G.
, and
J. M.
Dealy
, “
Start-up pressure transients in a capillary rheometer
,”
Polym. Eng. Sci.
34
,
493
499
(
1994
).
7.
Couch
,
M. A.
, and
D. M.
Binding
, “
High pressure capillary rheometry of polymeric fluids
,”
Polymer
41
,
6323
6334
(
2000
).
8.
Liang
,
J. Z.
, “
Pressure effect of viscosity for polymers fluids in die flow
,”
Polymer
42
,
3709
3712
(
2001
).
9.
Goubert
,
A.
,
J.
Vermant
,
P.
Moldenaers
,
A.
Göttfert
, and
B.
Ernst
, “
Comparison of measurement techniques for evaluating the pressure dependence of the viscosity
,”
Appl. Rheol.
11
,
26
37
(
2001
).
10.
Tschoegl
,
N. W.
,
W. G.
Knauss
, and
I.
Emri
, “
The effect of temperature and pressure on the mechanical properties of thermo and/or piezorheologically simple polymeric materials inthermodynamic equilibrium. A critical review
,” in
Mechanics of Time Dependent Materials
(
Kluver Academic Publishers
,
Netherland
,
2002
), Vol. 6, pp.
53
99
.
11.
Cardinaels
,
R.
,
P.
Van Puyvelde
, and
P.
Moldenaers
, “
Evaluation and comparison of routes to obtain pressure coefficients from high pressure capillary rheometry data
,”
Rheol. Acta.
46
,
495
505
(
2007
).
12.
Aho
,
J.
, and
S.
Syrjälä
, “
Measurements of the pressure dependence of viscosity of polymer melts using a back pressure regulated capillary rheometer
,”
J. Appl. Polym. Sci.
117
,
1076
1084
(
2010
).
13.
Sorrentino
,
A.
, and
R.
Pantani
, “
Determination of the effect of pressure on viscosity of an isotactic polypropylene
,”
Polym. Bull.
70
,
2005
2014
(
2013
).
14.
Sorrentino
,
A.
, and
R.
Pantani
, “
Pressure dependent viscosity and free volume for atactic and syndiotatic polystyrene
,”
Rheol. Acta
48
,
467
478
(
2009
).
15.
Driscoll
,
P. D.
, and
D. C.
Bogue
, “
Pressure effects in polymer melt rheology
,”
J. Appl. Polym. Sci.
39
,
1755
1768
(
1990
).
16.
Fernandez
,
M.
,
M. E.
Muñoz
,
A.
Santamaria
,
S.
Syrjala
, and
J.
Aho
, “
Determining the pressure dependency of the viscosity using PVT data. A practical alternative for thermoplastics
,”
Polym. Test.
28
,
109
113
(
2009
).
17.
Sedlacek
,
T.
,
B.
Hausneova
, and
P.
Filip
, “
An evaluation of the pressure dependent melt viscosity of polyphenylsulphone
,”
Polym. Eng. Sci.
54
,
711
715
(
2014
).
18.
Sedlacek
,
T.
,
M.
Zatloukal
,
P.
Filip
,
A.
Boldizar
, and
P.
Saha
, “
On the effect of pressure on the shear and elongational viscosities of polymer melts
,”
Polym. Eng. Sci.
44
,
1328
1337
(
2004
).
19.
Sedlacek
,
T.
,
M.
Lengalova
,
M.
Zatloukal
,
P.
Filip
, and
P.
Saha
, “
Pressure dependent viscosity of surlyn/montmorillonite nanocomposite
,”
Rubber Compos.
33
,
299
303
(
2004
).
20.
Canales
,
J.
,
M.
Fernandez
,
J. J.
Pena
,
M. E.
Muñoz
, and
A.
Santamaria
, “
Rheological methods to investigate Graphene/amorphous polyamide nanocomposites: Aspect ratio, processing and crystallization
,”
Polym. Eng. Sci.
55
,
1142
1151
(
2015
).
21.
Hieber
,
C. A.
, “
Melt viscosity characterization and its application to injection molding
,” in
Injection and Compression Molding Fundamentals
, edited by
A. I.
Isayev
(
Marcel Dekker
,
New York
,
1987
), pp.
124
129
.
22.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
, 3rd ed. (
Wiley
,
New York
,
1980
).
23.
Fillers
,
R. W.
, and
N. W.
Tschoegl
, “
The effect of pressure on the mechanical properties of polymers
,”
Trans. Soc. Rheol.
21
,
51
100
(
1977
).
24.
Markovitz
,
H.
, “
Superposition in rheology
,”
J. Polym. Sci. Symp.
50
,
431
456
(
1975
).
25.
Plazek
,
D. J.
, “
Oh, Thermorheologically simplicity, wherefor art thou?
J. Rheol.
40
,
987
1014
(
1996
).
26.
Santanach Carreras
,
E.
,
N.
El Kissi
,
J. M.
Piau
,
F.
Toussaint
, and
S.
Nigen
, “
Pressure effects on viscosity and flow stability of polyethylene melts during extrusion
,”
Rheol. Acta
45
,
209
222
(
2006
).
27.
Dees
,
M.
,
M.
Magnus
,
N.
Hermans
,
W.
Thanes
,
A.-S.
Hanot
, and
P.
Van Puyvelde
, “
On the pressure correction of capillary melt rheology data
,”
Rheol. Acta
50
,
117
124
(
2011
).
28.
Chen
,
A.-F.
,
H.-X.
Huang
, and
W.-S.
Guan
, “
Capillary rheology of polystyrene, polypropylene and linear low density polyethylene melts
,”
Polym. Eng. Sci.
55
,
506
512
(
2015
).
29.
Martínez Boza
,
F. J.
, and
C.
Gallegos
, “
High pressure rheology
,” in
Rheology. Encyclopedia of Life Support Systems
(
EOLSS Publishers
,
Unesco, United Kingdom
,
2010
).
30.
Park
,
H. E.
,
S. T.
Lim
,
H. M.
Laun
, and
J. M.
Dealy
, “
Measurement of pressure coefficient of melt viscosity: Drag flow versus capillary flow
,”
Rheol. Acta
47
,
1023
1038
(
2008
).
31.
Bagley
,
E. B.
, “
End corrections in the capillary flow of polyethylene
,”
J. Appl. Phys.
28
,
624
627
(
1957
).
32.
Pantani
,
R.
, and
A.
Sorrentino
, “
Pressure effect on viscosity for atactic and syndiotactic polystyrene
,”
Polym. Bull.
54
,
365
376
(
2005
).
33.
Aho
,
J.
, and
S.
Syrjälä
, “
Evaluation of different methods for determining the entrance pressure drop in capillary rheometry
,”
Appl. Rheol.
18
,
63258
(
2008
).
34.
Bird
,
B. R.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymer Liquids
(
John Wiley and Sons, Inc.
,
New York
,
1987
), Vol. 1.
35.
Fangming
,
D.
,
C.
Robert
,
W. Z.
Scogna
,
S.
Brand
,
J. E.
Fisher
, and
K. I.
Winey
, “
Nanotube networks in polymer nanocomposites. Rheology and electrical conductivity
,”
Macromolecules
37
,
9048
9055
(
2004
).
36.
Pötschke
,
P.
,
M.
Abdel-Goad
,
I.
Alig
,
S.
Dudkin
, and
D.
Lellinger
, “
Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites
,”
Polymer
45
,
8863
8870
(
2004
).
37.
Kota
,
A. K.
,
B. H.
Cipriano
,
M. K.
Duesterberg
,
A. L.
Gerhson
,
D.
Powell
,
S. R.
Ragharan
, and
H. A.
Bruck
, “
Electrical and rheological percolation in polystyrene/MWCNT nanocomposites
,”
Macromolecules
40
,
7400
7406
(
2007
).
38.
Fernandez
,
M.
,
M.
Landa
,
M. E.
Muñoz
, and
A.
Santamaria
, “
Thermal and viscoelastic features of new nanocomposites based on a hot melt adhesive polyurethane and multi-walled carbon nanotubes
,”
Macromol. Mater. Eng.
295
,
1031
1041
(
2010
).
39.
Huegun
,
A.
,
M.
Fernandez
,
M. E.
Muñoz
, and
A.
Santamaria
, “
Rheological properties and electrical conductivity of irradiated MWCNT/PP nanocomposites
,”
Compos. Sci. Technol.
72
,
1602
1607
(
2012
).
40.
Basu
,
S.
,
M.
Singhi
,
B. K.
Satapathy
, and
M.
Fahim
, “
Dielectric, electrical and rheological characterization of grapheme filled polystyrene nanocomposites
,”
Polym. Comp.
34
,
2082
2093
(
2013
).
41.
Gao
,
C.
,
S.
Zhang
,
F.
Wanf
,
B.
Wen
,
C.
Han
,
Y.
Ding
, and
M.
Yang
, “
Graphene networks with low percolation threshold in ABS nanocomposites: Selective localization and electrical and rheological properties
,”
ACS Appl. Mater. Interfaces
6
,
12252–12260
(
2014
).
42.
Bokobza
,
L.
, “
Multiwall carbon nanotube elastomeric composites: A review
,”
Polymer
48
,
4907
4920
(
2007
).
43.
Jonscher
,
A. K.
, “
The universal dielectric response
,”
Nature
267
,
673
679
(
1977
).
44.
Yasuda
,
K.
,
R. C.
Armstrong
, and
R. E.
Cohen
, “
Shear flow properties of concentrated solutions of linear and star branched polystyrenes
,”
Rheol. Acta
20
,
163
178
(
1981
).
45.
Williams
,
M. L.
,
R. F.
Landel
, and
J. D.
Ferry
, “
The temperature dependence of relaxation mechanism in amorphous polymers and other glass forming liquids
,”
J. Am. Chem. Soc.
77
,
3701
3707
(
1955
).
46.
Warfield
,
R. W.
, and
B.
Hartmann
, “
Pressure dependence of transitions
,”
Polymer
23
,
1835
1837
(
1982
).
47.
Mavridis
,
H.
, and
R. N.
Shroff
, “
Temperature dependence of polyolefin melt rheology
,”
Polym. Eng. Sci.
32
,
1778
1791
(
1992
).
48.
Van Gurp
,
M.
, and
J.
Palmen
, “
Time temperature superposition for polymeric blends
,”
Rheol. Bull.
67
,
5
8
(
1998
).
49.
Fernandez
,
I.
,
A.
Santamaria
,
M. E.
Muñoz
, and
P.
Castell
, “
A rheological analysis of interactions in phenoxy/organoclay nanocomposites
,”
Eur. Polym. J.
43
,
3171
3176
(
2007
).
You do not currently have access to this content.