Tube-based theories have accurately predicted the rheological properties of entangled, linear, monodisperse polymer melts for slow flows since reptation is the dominant chain relaxation mechanism in this flow regime. However, at higher strain rates, the continuum level theories fail to describe the nonlinear properties precisely since all the relevant physical processes have not been incorporated self-consistently into the constitutive equation expression. Therefore, we have utilized dissipative particle dynamics (DPD) simulations to examine the flow microstructure coupling of moderately entangled polymer melts (13 ≤ 〈Zk〉 ≤ 27, 〈Zk〉: average entanglement density at equilibrium) undergoing simple shear flow. In so doing, not only do we gauge the fidelity of DPD simulations of flow of entangled polymeric fluids via a direct comparison with nonequilibrium molecular dynamics results, but also, we elucidate the intricate relationship between single chain dynamics and relaxation mechanisms in moderately entangled polymeric melts. Specifically, it is shown that at small shear rates, γ̇ ≤ τd1, chains reptate and flow align and as shear rate increases, at τd1 ≤ γ̇ ≤ τR1, significant chain orientation and onset of chain extension lead to flow-induced chain disentanglement and a commensurate dilation of the “tubes” allowing chain rotation/retraction to occur. Ultimately, at very high shear rates, τR1 ≤ γ̇, the chains become significantly aligned with the flow leading to destruction of the entanglement network where the chain motion resembles that of dilute/semi-dilute polymer solutions under theta condition.

1.
De Gennes
,
P. G.
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
,
572
579
(
1971
).
2.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
3.
McLeish
,
T. C. B.
, “
Tube theory of entangled polymer dynamics
,”
Adv. Phys.
51
,
1379
1527
(
2002
).
4.
Larson
,
R. G.
,
T.
Sridhar
,
L. G.
Leal
,
G. H.
McKinley
,
A. E.
Likhtman
, and
T. C. B.
McLeish
, “
Definitions of entanglement spacing and time constants in the tube model
,”
J. Rheol.
47
(
3
),
809
818
(
2003
).
5.
Robertson
,
R. M.
, and
D. E.
Smith
, “
Direct measurement of the intermolecular forces confining a single molecule in an entangled polymer solution
,”
Phys. Rev. Lett.
99
,
126001
(
2007
).
6.
Dambal
,
A.
,
A.
Kushwaha
, and
E. S. G.
Shaqfeh
, “
Slip-link simulations of entangled, finitely extensible, wormlike chains in shear flow
,”
Macromolecules
42
,
7168
7183
(
2009
).
7.
Kushwaha
,
A.
, and
E. S. G.
Shaqfeh
, “
Slip-link simulations of entangled polymers in planar extensional flow: Disentanglement modified extensional thinning
,”
J. Rheol.
55
,
463
483
(
2011
).
8.
Baig
,
C.
,
V. G.
Mavrantzas
, and
M.
Kröger
, “
Flow effects on melt structure and entanglement network of linear polymers: Results from a nonequilibrium molecular dynamics simulation study of a polyethylene melt in steady shear
,”
Macromolecules
43
,
6886
6902
(
2010
).
9.
Nafar
M. H.
,
B. J.
Edwards
, and
B.
Khomami
, “
Individual chain dynamics of a polyethylene melt undergoing steady shear
,”
J. Rheol.
59
,
119
153
(
2015
).
10.
Hoogerbrugge
,
P. J.
, and
J. M. V. A.
Koelman
, “
Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics
,”
EPL
19
,
155
160
(
1992
).
11.
Español
,
P.
, and
P.
Warren
, “
Statistical mechanics of dissipative particle dynamics
,”
EPL
30
(
4
),
191
196
(
1995
).
12.
Groot
,
R. D.
, and
P. B.
Warren
, “
Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation
,”
J. Chem. Phys.
107
(
11
),
4423
4435
(
1997
).
13.
Sirk
,
T. W.
,
Y. R.
Slizoberg
,
J. K.
Brennan
,
M.
Lisal
, and
J. W.
Andzelm
, “
An enhanced entangled polymer model for dissipative particle dynamics
,”
J. Chem. Phys.
136
(
13
),
134903
(
2012
).
14.
Kumar
,
S.
, and
R. G.
Larson
, “
Brownian dynamics simulations of flexible polymers with spring–spring repulsions
,”
J. Chem. Phys.
114
,
6937
6941
(
2001
).
15.
Padding
,
J. T.
, and
W. J.
Briels
, “
Uncrossability constraints in mesoscopic polymer melt simulations: Non-Rouse behavior of C120H242
,”
J. Chem. Phys.
115
,
2846
2859
(
2001
).
16.
Nikunen
P.
,
I.
Vattulainen
, and
M.
Karttunen
, “
Reptational dynamics in dissipative particle dynamics simulations of polymer melts
,”
Phys. Rev. E
75
(
3
),
036713
(
2007
).
17.
Karayiannis
,
N. Ch.
, and
M.
Kröger
, “
Combined molecular algorithms for the generation, equilibration and topological analysis of entangled polymers: Methodology and performance
,”
Int. J. Mol. Sci.
10
,
5054
5089
(
2009
).
18.
Kröger
,
M.
, “
Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems
,”
Comput. Phys. Commun.
168
,
209
232
(
2005
).
19.
Shanbhag
,
S.
, and
M.
Kröger
, “
Primitive path networks generated by annealing and geometrical methods: Insights into differences
,”
Macromolecules
40
(
8
),
2897
2903
(
2007
).
20.
Everaers
,
R.
, “
Topological versus rheological entanglement length in primitive-path analysis protocols, tube models, and slip-link models
,”
Phys. Rev. E
86
,
022801
(
2012
).
21.
Verlet
,
L.
, “
Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
,”
Phys. Rev.
159
,
98
103
(
1967
).
22.
Thompson
,
A. P.
,
S. J.
Plimpton
, and
W.
Mattson
, “
General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions
,”
J. Chem. Phys.
131
,
154107
(
2009
).
23.
Kremer
,
K.
, and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
(
8
),
5057
5086
(
1990
).
24.
Colby
,
R. H.
, “
The melt viscosity-molecular weight relationship for linear polymers
,”
Macromolecules
20
,
2226
2237
(
1987
).
25.
Milner
,
S. T.
, and
T. C. B.
McLeish
, “
Reptation and contour-length fluctuations in melts of linear polymers
,”
Phys. Rev. Lett.
81
,
725
728
(
1998
).
26.
Pearson
,
D. S.
,
G.
Ver Strate
,
E.
von Meerwall
, and
F. C.
Schilling
, “
Viscosity and self-diffusion coefficient of linear polyethylene
,”
Macromolecules
20
,
1133
1141
(
1987
).
27.
Nemoto
,
N.
,
T.
Kojima
,
T.
Inoue
,
M.
Kishine
,
T.
Hirayama
, and
M.
Kurata
, “
Self diffusion and tracer-diffusion coefficient and viscosity of concentrated solutions of linear polystyrenes in dibutyl phthalate
,”
Macromolecules
22
,
3793
3798
(
1989
).
28.
Nemoto
,
N.
,
M.
Kishine
,
T.
Inoue
, and
K.
Osaki
, “
Tracer diffusion of linear polystyrene in entanglement networks
,”
Macromolecules
23
,
659
664
(
1990
).
29.
Nemoto
,
N.
,
M.
Kishine
,
T.
Inoue
, and
K.
Osaki
, “
Self-diffusion and viscoelasticity of linear polystyrene in entangled solutions
,”
Macromolecules
24
,
1648
1654
(
1991
).
30.
Lodge
,
T. P.
, “
Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers
,”
Phys. Rev. Lett.
83
,
3218
3221
(
1999
).
31.
Pütz
,
M.
,
K.
Kremer
, and
G. S.
Grest
, “
What is the entanglement length in a polymer melt
,”
EPL
49
(
6
),
735
741
(
2000
).
32.
Colby
,
R. H.
, and
M.
Rubinstein
,
Polymer Physics
(
Oxford University
,
Oxford
,
2003
).
33.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworths
,
Boston
,
1988
).
34.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
Oxford
,
1999
).
35.
Mead
,
D. W.
,
R. G.
Larson
, and
M.
Doi
, “
A molecular theory for fast flows of entangled polymers
,”
Macromolecules
31
,
7895
7914
(
1998
).
36.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
On compatibility of the Cox-Merz rule with the model of Doi and Edwards
,”
J. Non-Newtonian Fluid Mech.
65
,
241
246
(
1996
).
37.
Marrucci
,
G.
, “
Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule
,”
J. Non-Newtonian Fluid Mech.
62
,
279
289
(
1996
).
38.
Marrucci
,
G.
, and
G.
Ianniruberto
, “
Effect of flow on topological interactions in polymers
,”
Macromol. Symp.
117
,
233
240
(
1997
).
You do not currently have access to this content.