This précis is aimed as a practical field guide to situations in which shear banding might be expected in complex fluids subject to an applied shear flow. Separately for several of the most common flow protocols, it summarizes the characteristic signatures in the measured bulk rheological signals that suggest the presence of banding in the underlying flow field. It does so both for a steady applied shear flow and for the time-dependent protocols of shear startup, step stress, finite strain ramp, and large amplitude oscillatory shear. An important message is that banding might arise rather widely in flows with a strong enough time dependence, even in fluids that do not support banding in a steadily applied shear flow. This suggests caution in comparing experimental data with theoretical calculations that assume a homogeneous shear flow. In a brief postlude, we also summarize criteria in similar spirit for the onset of necking in extensional filament stretching.

1.
Goveas
,
J.
, and
P.
Olmsted
, “
A minimal model for vorticity and gradient banding in complex fluids
,”
Eur. Phys. J. E
6
,
79
89
(
2001
).
2.
Olmsted
,
P. D.
, “
Perspectives on shear banding in complex fluids
,”
Rheol. Acta
47
,
283
300
(
2008
).
3.
Britton
,
M. M.
, and
P. T.
Callaghan
, “
Two-phase shear band structures at uniform stress
,”
Phys. Rev. Lett.
78
,
4930
4933
(
1997
).
4.
Salmon
,
J.-B.
,
S.
Manneville
, and
A.
Colin
, “
Shear banding in a lyotropic lamellar phase. I. time-averaged velocity profiles
,”
Phys. Rev. E
68
,
051503
(
2003
).
5.
Manneville
,
S.
,
A.
Colin
,
G.
Waton
, and
F.
Schosseler
, “
Wall slip, shear banding, and instability in the flow of a triblock copolymer micellar solution
,”
Phys. Rev. E
75
,
061502
(
2007
).
6.
Rogers
,
S.
,
D.
Vlassopoulos
, and
P.
Callaghan
, “
Aging, yielding, and shear banding in soft colloidal glasses
,”
Phys. Rev. Lett.
100
,
128304
(
2008
).
7.
Divoux
,
T.
,
D.
Tamarii
,
C.
Barentin
, and
S.
Manneville
, “
Transient shear banding in a simple yield stress fluid
,”
Phys. Rev. Lett.
104
,
208301
(
2010
).
8.
Martin
,
J. D.
, and
Y. T.
Hu
, “
Transient and steady-state shear banding in aging soft glassy materials
,”
Soft Matter
8
,
6940
6949
(
2012
).
9.
Coussot
,
P.
,
J. S.
Raynaud
,
F.
Bertrand
,
P.
Moucheront
,
J. P.
Guilbaud
,
H. T.
Huynh
,
S.
Jarny
, and
D.
Lesueur
, “
Coexistence of liquid and solid phases in flowing soft-glassy materials
,”
Phys. Rev. Lett.
88
,
218301
(
2002
).
10.
Li
,
Y.
,
M.
Hu
,
G. B.
McKenna
,
C. J.
Dimitriou
,
G. H.
McKinley
,
R. M.
Mick
,
D. C.
Venerus
, and
L. A.
Archer
, “
Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions
,”
J. Rheol.
57
,
1411
1428
(
2013
).
11.
Wang
,
S.-Q.
,
G.
Liu
,
S.
Cheng
,
P. E.
Boukany
,
Y.
Wang
, and
X.
Li
, “
Letter to the editor: Sufficiently entangled polymers do show shear strain localization at high enough weissenberg numbers
,”
J. Rheol.
58
,
1059
1069
(
2014
).
12.
Wang
,
S.-Q.
,
S.
Ravindranath
, and
P. E.
Boukany
, “
Homogeneous shear, wall slip, and shear banding of entangled polymeric liquids in simple-shear rheometry: A roadmap of non-linear rheology
,”
Macromolecules
44
,
183
190
(
2011
).
13.
Ravindranath
,
S.
,
S.-Q.
Wang
,
M.
Ofechnowicz
, and
R. P.
Quirk
, “
Banding in simple steady shear of entangled polymer solutions
,”
Macromolecules
41
,
2663
2670
(
2008
).
14.
Divoux
,
T.
,
M. A.
Fardin
,
S.
Manneville
, and
S.
Lerouge
, “
Shear banding of complex fluids
,”
Annu. Rev. Fluid Mech.
48
,
81
103
(
2016
).
15.
Manneville
,
S.
, “
Recent experimental probes of shear banding
,”
Rheol. Acta
47
,
301
318
(
2008
).
16.
Fielding
,
S. M.
, “
Shear banding in soft glassy materials
,”
Rep. Prog. Phys.
77
,
102601
(
2014
).
17.
Moorcroft
,
R. L.
, and
S. M.
Fielding
, “
Criteria for shear banding in time-dependent flows of complex fluids
,”
Phys. Rev. Lett.
110
,
086001
(
2013
).
18.
Moorcroft
,
R. L.
, and
S. M.
Fielding
, “
Shear banding in time-dependent flows of polymers and wormlike micelles
,”
J. Rheol.
58
,
103
147
(
2014
).
19.
Adams
,
J. M.
, and
P. D.
Olmsted
, “
Nonmonotonic models are not necessary to obtain shear banding phenomena in entangled polymer solutions
,”
Phys. Rev. Lett.
102
,
067801
(
2009
).
20.
Moorcroft
,
R. L.
,
M. E.
Cates
, and
S. M.
Fielding
, “
Age-dependent transient shear banding in soft glasses
,”
Phys. Rev. Lett.
106
,
055502
(
2011
).
21.
Manning
,
M. L.
,
J. S.
Langer
, and
J. M.
Carlson
, “
Strain localization in a shear transformation zone model for amorphous solids
,”
Phys. Rev. E
76
,
056106
(
2007
).
22.
Manning
,
M. L.
,
E. G.
Daub
,
J. S.
Langer
, and
J. M.
Carlson
, “
Rate-dependent shear bands in a shear-transformation-zone model of amorphous solids
,”
Phys. Rev. E
79
,
016110
(
2009
).
23.
Jagla
,
E. A.
, “
Shear band dynamics from a mesoscopic modeling of plasticity
,”
J. Stat. Mech.: Theory Exp.
2010
,
P12025
.
24.
Adams
,
J. M.
,
S. M.
Fielding
, and
P. D.
Olmsted
, “
Transient shear banding in entangled polymers: A study using the rolie-poly model
,”
J. Rheol.
55
,
1007
1032
(
2011
).
25.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
Use of particle-tracking velocimetry and ow birefringence to study nonlinear ow behavior of entangled wormlike micellar solution: From wall slip, bulk disentanglement to chain scission
,”
Macromolecules
41
,
1455
1464
(
2008
).
26.
Hu
,
Y. T.
,
C.
Palla
, and
A.
Lips
, “
Comparison between shear banding and shear thinning in entangled micellar solutions
,”
J. Rheol.
52
,
379
400
(
2008
).
27.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
Shear banding or not in entangled DNA solutions depending on the level of entanglement
,”
J. Rheol.
53
,
73
83
(
2009
).
28.
Hu
,
Y.
,
L.
Wilen
,
A.
Philips
, and
A.
Lips
, “
Is the constitutive relation for entangled polymers monotonic?
,”
J. Rheol.
51
,
275
295
(
2007
).
29.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
Exploring the transition from wall slip to bulk shearing banding in well-entangled dna solutions
,”
Soft Matter
5
,
780
789
(
2009
).
30.
Divoux
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
Stress overshoot in a simple yield stress fluid: An extensive study combining rheology and velocimetry
,”
Soft Matter
7
,
9335
9349
(
2011
).
31.
Cao
,
J.
, and
A. E.
Likhtman
, “
Shear banding in molecular dynamics of polymer melts
,”
Phys. Rev. Lett.
108
,
028302
(
2012
).
32.
Shi
,
Y.
,
M. B.
Katz
,
H.
Li
, and
M. L.
Falk
, “
Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids
,”
Phys. Rev. Lett.
98
,
185505
(
2007
).
33.
Fielding
,
S. M.
,
R. L.
Moorcroft
,
R. G.
Larson
, and
M. E.
Cates
, “
Modeling the relaxation of polymer glasses under shear and elongational loads
,”
J. Chem. Phys.
138
,
12A504
(
2013
).
34.
Kurokawa
,
A.
,
V.
Vidal
,
K.
Kurita
,
T.
Divoux
, and
S.
Manneville
, “
Avalanche-like fluidization of a non-brownian particle gel
,”
Soft Matter
11
,
9026
9037
(
2015
).
35.
Hu
,
Y. T.
, and
A.
Lips
, “
Kinetics and mechanism of shear banding in an entangled micellar solution
,”
J. Rheol.
49
,
1001
1027
(
2005
).
36.
Hu
,
Y. T.
, “
Steady-state shear banding in entangled polymers?
,”
J. Rheol.
54
,
1307
1323
(
2010
).
37.
Divoux
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
From stress-induced fluidization processes to herschel-bulkley behaviour in simple yield stress fluids
,”
Soft Matter
7
,
8409
8418
(
2011
).
38.
Gibaud
,
T.
,
D.
Frelat
, and
S.
Manneville
, “
Heterogeneous yielding dynamics in a colloidal gel
,”
Soft Matter
6
,
3482
3488
(
2010
).
39.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (laos)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
40.
Carter
,
K. A.
,
J. M.
Girkin
, and
S. M.
Fielding
, “
Shear banding in large amplitude oscillatory shear (LAOStrain and LAOStress)of polymers and wormlike micelles
,”
J. Rheol.
60
,
883
904
(
2016
); e-print arxiv.org/abs/1510.00191.
41.
Yerushalmi
,
J.
,
S.
Katz
, and
R.
Shinnar
, “
The stability of steady shear flows of some viscoelastic fluids
,”
Chem. Eng. Sci.
25
,
1891
1902
(
1970
).
42.
Spenley
,
N. A.
,
M. E.
Cates
, and
T. C. B.
McLeish
, “
Nonlinear rheology of wormlike micelles
,”
Phys. Rev. Lett.
71
,
939
942
(
1993
).
43.
Olmsted
,
P.
,
O.
Radulescu
, and
C.
Lu
, “
Johnson-segalman model with a diffusion term in cylindrical couette flow
,”
J. Rheol.
44
,
257
275
(
2000
).
44.
Grand
,
C.
,
J.
Arrault
, and
M.
Cates
, “
Slow transients and metastability in wormlike micelle rheology
,”
J. Phys. II
7
,
1071
1086
(
1997
).
45.
Schmitt
,
V.
,
C. M.
Marques
, and
F.
Lequeux
, “
Shear-induced phase-separation of complex fluids – the role of flow-concentration coupling
,”
Phys. Rev. E
52
,
4009
4015
(
1995
).
46.
Brochard
,
F.
, and
P. G.
Degennes
, “
Dynamical scaling for polymers in theta-solvents
,”
Macromolecules
10
,
1157
1161
(
1977
).
47.
Helfand
,
E.
, and
G. H.
Fredrickson
, “
Large fluctuations in polymer-solutions under shear
,”
Phys. Rev. Lett.
62
,
2468
2471
(
1989
).
48.
Doi
,
M.
, and
A.
Onuki
, “
Dynamic coupling between stress and composition in polymer-solutions and blends
,”
J. Phys. II (France)
2
,
1631
1656
(
1992
).
49.
Milner
,
S. T.
, “
Dynamical theory of concentration fluctuations in polymer-solutions under shear
,”
Phys. Rev. E
48
,
3674
3691
(
1993
).
50.
Wu
,
X. L.
,
D. J.
Pine
, and
P. K.
Dixon
, “
Enhanced concentration fluctuations in polymer-solutions under shear-flow
,”
Phys. Rev. Lett.
66
,
2408
2411
(
1991
).
51.
Beris
,
A. N.
, and
V. G.
Mavrantzas
, “
On the compatibility between various macroscopic formalisms for the concentration and flow of dilute polymer solutions
,”
J. Rheol.
38
,
1235
1250
(
1994
).
52.
Sun
,
T.
,
A. C.
Balazs
, and
D.
Jasnow
, “
Dynamics of phase separation in polymer solutions under shear flow
,”
Phys. Rev. E
55
,
R6344
R6347
(
1997
).
53.
Fielding
,
S.
, and
P.
Olmsted
, “
Kinetics of the shear banding instability in startup flows
,”
Phys. Rev. E
68
,
036313
(
2003
).
54.
Fielding
,
S.
, and
P.
Olmsted
, “
Early stage kinetics in a unified model of shear-induced demixing and mechanical shear banding instabilities
,”
Phys. Rev. Lett.
90
,
224501
(
2003
).
55.
Fielding
,
S.
, and
P.
Olmsted
, “
Flow phase diagrams for concentration-coupled shear banding
,”
Eur. Phys. J. E
11
,
65
83
(
2003
).
56.
Cromer
,
M.
,
M. C.
Villet
,
G. H.
Fredrickson
, and
L. G.
Leal
, “
Shear banding in polymer solutions
,”
Phys. Fluids
25
,
051703
(
2013
).
57.
Cromer
,
M.
,
G. H.
Fredrickson
, and
L. G.
Leal
, “
A study of shear banding in polymer solutions
,”
Phys. Fluids
26
,
063101
(
2014
).
58.
Besseling
,
R.
,
L.
Isa
,
P.
Ballesta
,
G.
Petekidis
,
M. E.
Cates
, and
W. C. K.
Poon
, “
Shear banding and flow-concentration coupling in colloidal glasses
,”
Phys. Rev. Lett.
105
,
268301
(
2010
).
59.
Jin
,
H.
,
K.
Kang
,
K. H.
Ahn
, and
J. K. G.
Dhont
, “
Flow instability due to coupling of shear-gradients with concentration: non-uniform flow of (hard-sphere) glasses
,”
Soft Matter
10
,
9470
9485
(
2014
).
60.
Ragouilliaux
,
A.
,
B.
Herzhaft
,
F.
Bertrand
, and
P.
Coussot
, “
Flow instability and shear localization in a drilling mud
,”
Rheol. Acta
46
,
261
271
(
2006
).
61.
Bandyopadhyay
,
R.
,
G.
Basappa
, and
A. K.
Sood
, “
Observation of chaotic dynamics in dilute sheared aqueous solutions of ctat
,”
Phys. Rev. Lett.
84
,
2022
2025
(
2000
).
62.
Ganapathy
,
R.
, and
A. K.
Sood
, “
Intermittency route to rheochaos in wormlike micelles with flow-concentration coupling
,”
Phys. Rev. Lett.
96
,
108301
(
2006
).
63.
Fielding
,
S.
, and
P.
Olmsted
, “
Spatiotemporal oscillations and rheochaos in a simple model of shear banding
,”
Phys. Rev. Lett.
92
,
084502
(
2004
).
64.
Aradian
,
A.
, and
M.
Cates
, “
Instability and spatiotemporal rheochaos in a shear-thickening fluid model
,”
Europhys. Lett.
70
,
397
403
(
2005
).
65.
Aradian
,
A.
, and
M. E.
Cates
, “
Minimal model for chaotic shear banding in shear thickening fluids
,”
Phys. Rev. E
73
,
041508
(
2006
).
66.
Derec
,
C.
,
G.
Ducouret
,
A.
Ajdari
, and
F.
Lequeux
, “
Aging and nonlinear rheology in suspensions of polyethylene oxide-protected silica particles
,”
Phys. Rev. E
67
,
061403
(
2003
).
67.
Rogers
,
S. A.
,
P. T.
Callaghan
,
G.
Petekidis
, and
D.
Vlassopoulos
, “
Time-dependent rheology of colloidal star glasses
,”
J. Rheol.
54
,
133
158
(
2010
).
68.
Koumakis
,
N.
, and
G.
Petekidis
, “
Two step yielding in attractive colloids: transition from gels to attractive glasses
,”
Soft Matter
7
,
2456
2470
(
2011
).
69.
Dimitriou
,
C. J.
, and
G. H.
McKinley
, “
A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid
,”
Soft Matter
10
,
6619
6644
(
2014
).
70.
Likhtman
,
A. E.
, and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-poly equation
,”
J. Non-Newtonian Fluid Mech.
114
,
1
12
(
2003
).
71.
Gibaud
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
Influence of boundary conditions on yielding in a soft glassy material
,”
Phys. Rev. Lett.
101
,
258302
(
2008
).
72.
Mohagheghi
,
M.
, and
B.
Khomami
, “
Elucidating the flow-microstructure coupling in entangled polymer melts: Part II. Molecular mechanisms of shear banding
,”
J. Rheol.
60
,
861
872
(
2016
).
73.
Colombo
,
J.
, and
E.
Del Gado
, “
Stress localization, stiffening, and yielding in a model colloidal gel
,”
J. Rheol.
58
,
1089
1116
(
2014
).
74.
Varnik
,
F.
,
L.
Bocquet
, and
J. L.
Barrat
, “
A study of the static yield stress in a binary Lennard-Jones glass
,”
J. Chem. Phys.
120
,
2788
2801
(
2004
).
75.
Shrivastav
,
G. P.
,
P.
Chaudhuri
, and
J.
Horbach
, “
Heterogeneous dynamics during yielding of glasses: Effect of aging
,”
J. Rheol.
60
,
835
847
(
2016
).
76.
Kabla
,
A.
,
J.
Scheibert
, and
G.
Debregeas
, “
Quasi-static rheology of foams. part 2. continuous shear flow
,”
J. Fluid Mech.
587
,
45
72
(
2007
).
77.
Barry
,
J. D.
,
D.
Weaire
, and
S.
Hutzler
,
Rheol. Acta
49
,
687
(
2010
);
5th Annual European Rheology Conference (AERC 2009), Cardiff Univ, Cardiff, Wales
,
Apr. 15–17, 2009
.
78.
Lehtinen
,
A.
,
A.
Puisto
,
X.
Illa
,
M.
Mohtaschemi
, and
M. J.
Alava
, “
Transient shear banding in viscoelastic maxwell fluids
,”
Soft Matter
9
,
8041
8049
(
2013
).
79.
Hinkle
,
A. R.
, and
M. R.
Falk
, “
A small-gap effective-temperature model of transient shear band formation during flow
,”
J. Rheol.
60
,
873
882
(
2016
).
80.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
,
018304
(
2013
).
81.
Magnin
,
A.
, and
J.
Piau
, “
Cone-and-plate rheometry of yield stress fluids – study of an aqueous gel
,”
J. Non-Newtonian Fluid Mech.
36
,
85
108
(
1990
).
82.
Grenard
,
V.
,
T.
Divoux
,
N.
Taberlet
, and
S.
Manneville
, “
Timescales in creep and yielding of attractive gels
,”
Soft Matter
10
,
1555
1571
(
2014
).
83.
Sentjabrskaja
,
T.
,
P.
Chaudhuri
,
M.
Hermes
,
W. C. K.
Poon
,
J.
Horbach
,
S. U.
Egelhaaf
, and
M.
Laurati
, “
Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities
,”
Sci. Rep.
5
,
11884
(
2015
).
84.
Chaudhuri
,
P.
, and
J.
Horbach
, “
Onset of ow in a confined colloidal glass under an imposed shear stress
,”
Phys. Rev. E
88
,
040301
(
2013
).
85.
Agimelen
,
O. S.
, and
P. D.
Olmsted
, “
Apparent fracture in polymeric fluids under step shear
,”
Phys. Rev. Lett.
110
,
204503
(
2013
).
86.
Marrucci
,
G.
, “
Dynamics of entanglements: A nonlinear model consistent with the cox-merz rule
,”
J. Non-Newtonian Fluid Mech.
62
,
279
289
(
1996
).
87.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Convective constraint release (ccr) revisited
,”
J. Rheol.
58
,
89
102
(
2014
).
88.
Marrucci
,
G.
, and
N.
Grizzuti
, “
The free energy function of the Doi-Edwards theory: analysis of the instabilities in stress relaxation
,”
J. Rheol.
27
,
433
450
(
1983
).
89.
Li
,
X.
, and
S.-Q.
Wang
, “
Elastic yielding after step shear and during laos in the absence of meniscus failure
,”
Rheol. Acta
49
,
985
991
(
2010
).
90.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
Exploring origins of interfacial yielding and wall slip in entangled linear melts during shear or after shear cessation
,”
Macromolecules
42
,
2222
2228
(
2009
).
91.
Wang
,
S.-Q.
,
S.
Ravindranath
,
P.
Boukany
,
M.
Olechnowicz
,
R. P.
Quirk
,
A.
Halasa
, and
J.
Mays
, “
Nonquiescent relaxation in entangled polymer liquids after step shear
,”
Phys. Rev. Lett.
97
,
187801
(
2006
).
92.
Ravindranath
,
S.
, and
S.-Q.
Wang
, “
What are the origins of stress relaxation behaviors in step shear of entangled polymer solutions?
,”
Macromolecules
40
,
8031
8039
(
2007
).
93.
Fang
,
Y.
,
G.
Wang
,
N.
Tian
,
X.
Wang
,
X.
Zhu
,
P.
Lin
,
G.
Ma
, and
L.
Li
, “
Shear inhomogeneity in poly(ethylene oxide) melts
,”
J. Rheol.
55
,
939
949
(
2011
).
94.
Archer
,
L. A.
,
Y.-L.
Chen
, and
R. G.
Larson
, “
Delayed slip after step strains in highly entangled polystyrene solutions
,”
J. Rheol.
39
,
519
525
(
1995
).
95.
Ravindranath
,
S.
,
S.-Q.
Wang
,
M.
Olechnowicz
,
V. S.
Chavan
, and
R. P.
Quirk
, “
How polymeric solvents control shear inhomogeneity in large deformations of entangled polymer mixtures
,”
Rheol. Acta
50
,
97
105
(
2011
).
96.
Boukany
,
P. E.
,
S.-Q.
Wang
, and
X.
Wang
, “
Step shear of entangled linear polymer melts: New experimental evidence for elastic yielding
,”
Macromolecules
42
,
6261
6269
(
2009
).
97.
Zhou
,
L.
,
L. P.
Cook
, and
G. H.
McKinley
, “
Probing shear-banding transitions of the vcm model for entangled wormlike micellar solutions using large amplitude oscillatory shear (laos) deformations
,”
J. Non-Newtonian Fluid Mech.
165
,
1462
1472
(
2010
).
98.
Zhou
,
L.
,
R. H.
Ewoldt
,
L. P.
Cook
, and
G. H.
McKinley
, “
Probing shear-banding transitions of entangled liquids using large amplitude oscillatory shearing (laos) deformations. In A Co, LG Leal, RH Colby, and AJ Giacomin, editors, XVTH International Congress on Rheology – The Society of Rheology 80th Annual Meeting, Pts 1 and 2
,”
AIP Conf. Proc.
1027
,
189
191
(
2008
).
99.
Tapadia
,
P.
,
S.
Ravindranath
, and
S. Q.
Wang
, “
Banding in entangled polymer fluids under oscillatory shearing
,”
Phys. Rev. Lett.
96
,
196001
(
2006
).
100.
Cohen
,
I.
,
B.
Davidovitch
,
A. B.
Schofield
,
M. P.
Brenner
, and
D. A.
Weitz
, “
Slip, yield, and bands in colloidal crystals under oscillatory shear
,”
Phys. Rev. Lett.
97
,
215502
(
2006
).
101.
Perge
,
C.
,
N.
Taberlet
,
T.
Gibaud
, and
S.
Manneville
, “
Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel
,”
J. Rheol.
58
,
1331
1357
(
2014
).
102.
Gibaud
,
T.
,
C.
Perge
,
S. B.
Lindstrom
,
N.
Taberlet
, and
S.
Manneville
, “
Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress
,”
Soft Matter
12
,
1701
1712
(
2016
).
103.
Rouyer
,
F.
,
S.
Cohen-Addad
,
R.
Hoehler
,
P.
Sollich
, and
S. M.
Fielding
, “
The large amplitude oscillatory strain response of aqueous foam: Strain localization and full stress fourier spectrum
,”
Eur. Phys. J. E
27
,
309
321
(
2008
).
104.
Guo
,
Y.
,
W.
Yu
,
Y.
Xu
, and
C.
Zhou
, “
Correlations between local flow mechanism and macroscopic rheology in concentrated suspensions under oscillatory shear
,”
Soft Matter
7
,
2433
2443
(
2011
).
105.
Dimitriou
,
C. J.
,
L.
Casanellas
,
T. J.
Ober
, and
G. H.
McKinley
, “
Rheo-piv of a shear-banding wormlike micellar solution under large amplitude oscillatory shear
,”
Rheol. Acta
51
,
395
411
(
2012
).
106.
Gurnon
,
A. K.
, and
N. J.
Wagner
, “
Large amplitude oscillatory shear (laos) measurements to obtain constitutive equation model parameters: Giesekus model of banding and non-banding wormlike micelles
,”
J. Rheol.
56
,
333
351
(
2012
).
107.
Calabrese
,
M. A.
,
S. A.
Rogers
,
L.
Porcar
, and
N. J.
Wagner
, “
Understanding steady and dynamic shear banding in a wormlike micellar solution
,”
J. Rheol.
60
,
1001
1017
(
2016
).
108.
Fielding
,
S. M.
, “
Criterion for extensional necking instability in polymeric fluids
,”
Phys. Rev. Lett.
107
,
258301
(
2011
).
109.
Hoyle
,
D. M.
, and
S. M.
Fielding
, “
Age-dependent modes of extensional necking instability in soft glassy materials
,”
Phys. Rev. Lett.
114
,
158301
(
2015
).
110.
Larson
,
R.
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworth
,
Stoneham, MA
,
1988
).
111.
McLeish
,
T. C. B.
, and
R. G.
Larson
, “
Molecular constitutive equations for a class of branched polymers: the pom-pom polymer
,”
J. Rheol.
42
,
81
110
(
1998
).
112.
Considère
,
M.
,
Ann. Ponts Chausées
9
,
574
(
1885
).
113.
Hassager
,
O.
,
M. I.
Kolte
, and
M.
Renardy
, “
Failure and nonfailure of fluid filaments in extension
,”
J. Non-Newtonian Fluid Mech.
76
,
137
151
(
1998
).
You do not currently have access to this content.