A single Brownian “probe” particle is driven by an external force through a colloidal suspension and its motion studied to elucidate the relative impacts of external, Brownian, and interparticle forces on the suspension stress. As the probe moves through the suspension, distortions to and relaxation of the particle arrangement give rise to nonequilibrium stress. The shape of the distorted microstructure is set by the strength of the external force, F0, relative to the entropic restoring force, kT/ath, of the suspension, and by the balance of microscopic forces between the constituent particles. The former is given by the Péclet number, PeF0/(2kT/ath), where kT is the thermal energy and ath is the thermodynamic size of the particles. The latter comprise external, Brownian, and interparticle forces, and the sensitivity of each to flow strength Pe is set by the dimensionless repulsion range, κ(atha)/a, where a is the hydrodynamic size of the particles. The total stress comprises hydrodynamic and entropic contributions which manifest as Brownian, interparticle, and external force-induced stress. To analyze the influence of these forces on structure and suspension stress as they evolve with flow strength, we formulate and solve a Smoluchowski equation analytically in the dual limits of weak and strong external force and hydrodynamic interactions, and numerically for arbitrary values of Pe and κ. Nonequilibrium statistical mechanics are then utilized to compute elements of the stress tensor. Owing to the axisymmetric geometry of the microstructure about the line of the external force, only the diagonal elements are nonzero. When hydrodynamic interactions are negligibly weak, only the hard-sphere interparticle force matters regardless of the flow strength, and the results of Zia and Brady [J. Rheol. 56(5), 1175–1208 (2012)] are recovered whereby normal stresses scale as Pe2 and Pe in the limits of weak and strong forcing, respectively. That is, entropic forces dominate suspension stress regardless of the value of Pe when hydrodynamic interactions are weak. As the repulsion range κ shrinks, hydrodynamic interactions begin to play a role: When forcing is weak, Brownian disturbance flows provide the dominant contribution to suspension stress, but as Pe increases, the external force-induced stress takes over to dominate the total stress. Interestingly, the total suspension stress decreases as the strength of hydrodynamic interactions increases, regardless of the value of Pe. That is, hydrodynamic interactions suppress suspension stress. Owing to the dependence of hydrodynamic interactions on particle configuration, this stress suppression varies with flow strength: At low Pe, the stress scales as Pe2 and the suppression is quantitative, whereas at high Pe, the stress scales as Peδ, where 1 ≥ δ ≥ 0.799 for hydrodynamic interactions spanning from weak to strong. We identify the origin of such suppression via an analysis of pair trajectories: While entropic forces—interparticle repulsion and Brownian motion—destroy reversible trajectories, hydrodynamic interactions suppress structural asymmetry and this underlies the suppression of the nonequilibrium stress. We relate the stress to the energy density: Hydrodynamic interactions shield particles from direct collisions and promote fore-aft and structural symmetry, resulting in reduced entropic energy storage.

1.
Batchelor
,
G. K.
, and
J. T.
Green
, “
The determination of the bulk stress in a suspension of spherical particles to order c2
,”
J. Fluid Mech.
56
,
401
427
(
1972
).
2.
Batchelor
,
G. K.
, “
The effect of Brownian motion on the bulk stress in a suspension of spherical particles
,”
J. Fluid Mech.
83
,
97
117
(
1977
).
3.
Brady
,
J. F.
, and
M.
Vicic
, “
Normal stresses in colloidal dispersions
,”
J. Rheol.
39
,
545
566
(
1995
).
4.
Brady
,
J. F.
, and
J. F.
Morris
, “
Microstructure of strongly sheared suspensions and its impact on rheology and diffusion
,”
J. Fluid Mech.
348
,
103
139
(
1997
).
5.
Russel
,
W. B.
, “
The Huggins coefficient as a means for characterizing suspended particles
,”
J. Chem. Soc., Faraday Trans. 2
80
,
31
41
(
1984
).
6.
Foss
,
D. R.
, and
J. F.
Brady
, “
Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation
,”
J. Fluid Mech.
407
,
167
200
(
2000
).
7.
Wilson
,
H. J.
, and
R. H.
Davis
, “
The viscosity of a dilute suspension of rough spheres
,”
J. Fluid Mech.
421
,
339
367
(
2000
).
8.
Wilson
,
H. J.
, and
R. H.
Davis
, “
Shear stress of a monolayer of rough spheres
,”
J. Fluid Mech.
452
,
425
441
(
2002
).
9.
Wilson
,
H. J.
, “
An analytic form for the pair distribution function and rheology of a dilute suspension of rough spheres in plane strain flow
,”
J. Fluid Mech.
534
,
97
114
(
2005
).
10.
Bergenholtz
,
J.
,
J. F.
Brady
, and
M.
Vicic
, “
The non-Newtonian rheology of dilute colloidal suspensions
,”
J. Fluid Mech.
456
,
239
275
(
2002
).
11.
Hoh
,
N. J.
, and
R. N.
Zia
, “
Hydrodynamic diffusion in active microrheology of non-colloidal suspensions: The role of interparticle forces
,”
J. Fluid Mech.
785
,
189
218
(
2015
).
12.
Zia
,
R. N.
, and
J. F.
Brady
, “
Microviscosity, microdiffusivity, ad normal stresses in colloidal dispersions
,”
J. Rheol.
56
(
5
),
1175
1208
(
2012
).
13.
Squires
,
T. M.
, and
J. F.
Brady
, “
A simple paradigm for active and nonlinear microrheology
,”
Phys. Fluids
17
,
073101
(
2005
).
14.
Meyer
,
A.
,
A.
Marshall
,
B. G.
Bush
, and
E. M.
Furst
, “
Laser tweezer microrheology of a colloidal suspension
,”
J. Rheol.
50
,
77
92
(
2006
).
15.
Khair
,
A. S.
, and
J. F.
Brady
, “
Single particle motion in colloidal dispersions: A simple model for active and nonlinear microrheology
,”
J. Fluid Mech.
557
,
73
117
(
2006
).
16.
Wilson
,
L. G.
,
A. W.
Harrison
,
A. B.
Schofield
,
J.
Arlt
, and
W. C. K.
Poon
, “
Passive and active microrheology of hard-sphere colloids
,”
J. Phys. Chem. B
113
,
3806
3812
(
2009
).
17.
Zia
,
R. N.
, and
J. F.
Brady
, “
Single particle motion in colloids: Force-induced diffusion
,”
J. Fluid Mech.
658
,
188
210
(
2010
).
18.
Zia
,
R. N.
, and
J. F.
Brady
, “
Stress development, relaxation, and memory in colloidal dispersions: Transient nonlinear microrheology
,”
J. Rheol.
57
,
457
492
(
2013
).
19.
Swan
,
J. W.
, and
R. N.
Zia
, “
Active microrheology: Fixed-velocity versus fixed-force
,”
Phys. Fluids
25
,
083303
(
2013
).
20.
Hoh
,
N. J.
, and
R. N.
Zia
, “
Force-induced diffusion in suspensions of hydrodynamically-interacting colloidals
,”
J. Fluid Mech.
795
,
739
783
(
2016
).
21.
Batchelor
,
G. K.
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
570
(
1970
).
22.
Bossis
,
G.
, and
J. F.
Brady
, “
The rheology of Brownian suspensions
,”
J. Chem. Phys.
91
,
1866
1874
(
1989
).
23.
Kim
,
S.
, and
R. T.
Mifflin
, “
The resistance and mobility functions of two equal spheres in low-Reynolds-number flow
,”
Phys. Fluids
28
,
2033
2045
(
1985
).
24.
Jeffrey
,
D. J.
, “
The calculation of the low Reynolds number resistance functions for two unequal spheres
,”
Phys. Fluids
4
,
16
29
(
1992
).
25.
Jeffrey
,
D. J.
,
J. F.
Morris
, and
J. F.
Brady
, “
The pressure moments for two rigid spheres in low-Reynolds-number flow
,”
Phys. Fluids
5
,
2317
2325
(
1993
).
26.
Batchelor
,
G. K.
, “
Brownian diffusion of particles with hydrodynamic interaction
,”
J. Fluid Mech.
74
,
1
29
(
1976
).
27.
Jeffrey
,
D. J.
, and
Y.
Onishi
, “
Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow
,”
J. Fluid Mech.
139
,
261
290
(
1984
).
28.
Kim
,
S.
, and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Butterworth-Heinemann
,
Boston, MA
,
1991
).
29.
Chu
,
H. C. W.
, and
R. N.
Zia
, “
The non-Newtonian rheology of hydrodynamically interacting colloids via active, nonlinear microrheology
,”
J. Rheol.
(unpublished).
30.
Batchelor
,
G. K.
, “
Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory
,”
J. Fluid Mech.
119
,
379
408
(
1982
).
31.
Brady
,
J. F.
, “
Brownian motion, hydrodynamics, and the osmotic pressure
,”
J. Chem. Phys.
98
,
3335
3341
(
1993
).
32.
Laun
,
H. M.
, “
Normal stresses in extremely shear thickening polymer dispersions
,”
J. Non-Newton Fluid Mech.
54
,
87
108
(
1994
).
33.
Zarraga
,
I. E.
,
D. A.
Hill
, and
D. T.
Leighton
, “
The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids
,”
J. Rheol.
44
,
185
220
(
2000
).
34.
Singh
,
A.
, and
P. R.
Nott
, “
Experimental measurements of the normal stresses in sheared Stokesian suspensions
,”
J. Fluid Mech.
490
,
293
320
(
2003
).
35.
Garland
,
S.
,
G.
Gauthier
,
J.
Martin
, and
J. F.
Morris
, “
Normal stress measurements in sheared non-Brownian suspensions
,”
J. Rheol.
57
,
71
88
(
2013
).
36.
Gamonpilas
,
C.
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear and normal stress measurements in non-Brownian monodisperse and bidisperse suspensions
,”
J. Rheol.
60
,
289
296
(
2016
).
37.
Gao
,
C.
,
S. D.
Kulkarni
,
J. F.
Morris
, and
J. F.
Gilchrist
, “
Direct investigation of anisotropic suspension structure in pressure-driven flow
,”
Phys. Rev. E
81
,
041403
(
2010
).
38.
Lin
,
N. Y. C.
,
J. H.
McCoy
,
X.
Cheng
,
B.
Leahy
,
J. N.
Israelachvili
, and
I.
Cohen
, “
A multi-axis confocal rheoscope for studying shear flow of structured fluids
,”
Rev. Sci. Instrum.
85
,
033905
(
2014
).
39.
Xu
,
B.
, and
J. F.
Gilchrist
, “
Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions
,”
J. Chem. Phys.
140
,
204903
(
2014
).
40.
Boyer
,
F.
,
O.
Pouliquen
, and
E.
Guazzelli
, “
Dense suspensions in rotating-rod flows: Normal stresses and particle migration
,”
J. Fluid Mech.
686
,
5
25
(
2011
).
41.
Lee
,
M.
,
M.
Alcoutlabi
,
J. J.
Magda
,
C.
Dibble
,
M. J.
Solomon
,
X.
Shi
, and
G. B.
McKenna
, “
The effect of the shear-thickening transition of model colloidal spheres on the sign of n1 and on the radial pressure profile in torsional shear flows
,”
J. Rheol.
50
,
293
311
(
2006
).
42.
Cwalina
,
C. D.
, and
N. J.
Wagner
, “
Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions
,”
J. Rheol.
58
,
949
967
(
2014
).
43.
Jamali
,
S.
,
A.
Boromand
,
N. J.
Wagner
, and
J.
Maia
, “
Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions
,”
J. Rheol.
59
,
1377
1395
(
2015
).
44.
Janosi
,
I. M.
,
T.
Tel
,
D. E.
Wolf
, and
J. A.
Gallas
, “
Chaotic particle dynamics in viscous flows: The three-particle Stokeslet problem
,”
Phys. Rev. E
56
,
2858
2868
(
1997
).
45.
Marchioro
,
M.
, and
A.
Acrivos
, “
Shear-induced particle diffusivities from numerical simulations
,”
J. Fluid Mech.
443
,
101
128
(
2001
).
46.
Drazer
,
G.
,
J.
Koplik
,
B.
Khusid
, and
A.
Acrivos
, “
Deterministic and stochastic behaviour of non-Brownian spheres in sheared suspensions
,”
J. Fluid Mech.
460
,
307
335
(
2002
).
47.
Pine
,
D. J.
,
J. P.
Gollub
,
J. F.
Brady
, and
A. M.
Leshansky
, “
Chaos and threshold for irreversibility in sheared suspensions
,”
Nature
438
,
997
1000
(
2005
).
48.
Su
,
Y.
,
K. L.
Gu
,
N. J.
Hoh
, and
R. N.
Zia
, “
Force-induced diffusion of Brownian suspensions by accelerated Stokesian dynamics simulation
,”
Soft Matter
(unpublished).
49.
Zia
,
R. N.
,
J. W.
Swan
, and
Y.
Su
, “
Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation
,”
J. Chem. Phys.
143
,
224901
(
2015
).
50.
Su
,
Y.
,
H. C. W.
Chu
, and
R. N.
Zia
, “
Microviscosity, normal stress and osmotic pressure of Brownian suspensions by accelerated Stokesian dynamics simulation
,”
Soft Matter
(unpublished).
51.
Zia
,
R. N.
,
B. J.
Landrum
, and
W. B.
Russel
, “
A micro-mechanical study of coarsening and rheology of colloidal gels: Cage building, cage hopping, and Smoluchowski's ratchet
,”
J. Rheol.
58
,
1121
1157
(
2014
).
52.
Landrum
,
B. J.
,
W. B.
Russel
, and
R. N.
Zia
, “
Delayed yield in colloidal gels: Creep, flow, and re-entrant solid regimes
,”
J. Rheol.
60
(
4
),
783
807
(
2016
).
You do not currently have access to this content.