Blends containing 75 wt. % of an amorphous polylactide (PLA) with two different molecular weights and 25 wt. % of a poly[(butylene adipate)-co-terephthalate] (PBAT) were prepared using either a Brabender batch mixer or a twin-screw extruder. These compounds were selected because blending PLA with PBAT can overcome various drawbacks of PLA such as its brittleness and processability limitations. In this study, we investigated the effects of varying the molecular weight of the PLA matrix and of two different mixing processes on the blend morphology and, further, on droplet coalescence during shearing. The rheological properties of these blends were investigated and the interfacial properties were analyzed using the Palierne emulsion model. Droplet coalescence was investigated by applying shear flows of 0.05 and 0.20 s−1 at a fixed strain of 60. Subsequently, small amplitude oscillatory shear tests were conducted to investigate changes in the viscoelastic properties. The morphology of the blends was also examined using scanning electron microscope (SEM) micrographs. It was observed that the PBAT droplets were much smaller when twin-screw extrusion was used for the blend preparation. Shearing at 0.05 s−1 induced significant droplet coalescence in all blends, but coalescence and changes in the viscoelastic properties were much more pronounced for the PLA-PBAT blend based on a lower molecular weight PLA. The viscoelastic responses were also somehow affected by the thermal degradation of the PLA matrix during the experiments.

1.
Macosko
,
C. W.
, “
Morphology development and control in immiscible polymer blends
,”
Macromol. Symp.
149
,
171
184
(
2000
).
2.
Favis
,
B. D.
, and
J. P.
Chalifoux
, “
The effect of viscosity ratio on the morphology of polypropylene/polycarbonate blends during processing
,”
Polym. Eng. Sci.
27
,
1591
1600
(
1987
).
3.
Favis
,
B. D.
, and
D.
Therrien
, “
Factors influencing structure formation and phase size in an immiscible polymer blends of polycarbonate and polypropylene prepared by twin-screw extrusion
,”
Polymer
32
,
1474
1481
(
1991
).
4.
Scott
,
C. E.
, and
C. W.
Macosko
, “
Model experiments concerning morphology development during the initial stages of polymer blending
,”
Polym. Bull.
26
,
341
348
(
1991
).
5.
Sundararaj
,
U.
,
C. W.
Macosko
,
A.
Nakayama
, and
T.
Inoue
, “
Milligrams to kilograms—An evaluation of mixers for reactive polymer blending
,”
Polym. Eng. Sci.
35
,
100
114
(
1995
).
6.
Favis
,
B. D.
, “
Polymer alloys and blends: Recent advances
,”
Can. J. Chem. Eng.
69
,
619
625
(
1991
).
7.
Utracki
,
L. A.
, and
Z. H.
Shi
, “
Development of polymer blend morphology during compounding in a twin-screw extruder. Part I: Droplet dispersion and coalescence—A review
,”
Polym. Eng. Sci.
32
,
1824
1833
(
1992
).
8.
Souza
,
A. M. C.
, and
N. R.
Demarquette
, “
Influence of coalescence and interfacial tension on the morphology of PP/HDPE compatibilized blends
,”
Polymer
43
,
3959
3967
(
2002
).
9.
Maani
,
A.
,
B.
Blais
,
M. C.
Heuzey
, and
P. J.
Carreau
, “
Rheological and morphological properties of reactively compatibilized thermoplastic olefin (TPO) blends
,”
J. Rheol.
56
,
625
647
(
2012
).
10.
Huitric
,
J.
,
M.
Moan
,
P. J.
Carreau
, and
N.
Dufaure
, “
Effect of reactive compatibilization on droplet coalescence in shear flow
,”
J. Non-Newtonian Fluid Mech.
145
,
139
149
(
2007
).
11.
Van Puyvelde
,
P.
,
A.
Vananroye
,
R.
Cardinaels
, and
P.
Moldenaers
, “
Review on morphology development of immiscible blends in confined shear flow
,”
Polymer
49
,
5363
5372
(
2008
).
12.
Maani
,
A.
,
M. C.
Heuzey
, and
P. J.
Carreau
, “
Coalescence in thermoplastic olefin (TPO) blends under shear flow
,”
Rheol. Acta
50
,
881
895
(
2011
).
13.
Nofar
,
M.
,
A.
Maani
,
H.
Sojoudi
,
M.-C.
Heuzey
, and
P. J.
Carreau
, “
Interfacial and rheological properties of PLA/PBAT and PLA/PBSA blends and their morphological stability under shear flow
,”
J. Rheol.
59
(
2
),
317
333
(
2015
).
14.
Sarazin
,
P.
, and
B. D.
Favis
, “
Morphology control in co-continuous poly(L-lactide)/polystyrene blends: A route towards highly structured and interconnected porosity in poly(L-lactide) materials
,”
Biomacromolecules
4
,
1669
1679
(
2003
).
15.
Hale
,
W.
,
H.
Keskkula
, and
D. R.
Paul
, “
Compatibilization of PBT/ABS blends by methyl methacrylate glycidyl methacrylate ethyl acrylate terpolymers
,”
Polymer
40
,
365
377
(
1999
).
16.
Lin
,
B.
,
F.
Mighri
,
M. A.
Huneault
, and
U.
Sundararaj
, “
Effect of premade compatibilizer and reactive polymers on polystyrene drop deformation and breakup in simple shear
,”
Macromolecules
38
,
5609
5616
(
2005
).
17.
Al-Itry
,
R.
,
K.
Lamnawar
, and
A.
Maazouz
, “
Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends
,”
Rheol. Acta
53
,
501
517
(
2014
).
18.
Minale
,
M.
,
P.
Moldenaers
, and
J.
Mewis
, “
Effect of shear history on the morphology of immiscible polymer blends
,”
Macromolecules
30
,
5470
5475
(
1997
).
19.
Grizzuti
,
N.
, and
O.
Bifulco
, “
Effect of coalescence and breakup on the steady-state morphology of an immiscible polymer blend in shear flow
,”
Rheol. Acta
36
,
406
415
(
1997
).
20.
Vinckier
,
I.
,
P.
Moldenaers
, and
J.
,
Mewis
, “
Relationship between rheology and morphology of model blends in steady shear flow
,”
J. Rheol.
40
,
613
631
(
1996
).
21.
Tucker
,
C. L.
, and
P.
Moldenaers
, “
Microstructural evolution in polymer blends
,”
Annu. Rev. Fluid Mech.
34
,
177
210
(
2002
).
22.
Caserta
,
S.
,
M.
Simeone
, and
S.
Guido
, “
Evolution of drop size distribution of polymer blends under shear flow by optical sectioning
,”
Rheol. Acta
43
,
491
501
(
2004
).
23.
Caserta
,
S.
,
M.
Simeone
, and
S.
Guido
, “
Shear banding in biphasic liquid-liquid systems
,”
Phys. Rev. Lett.
100
,
137801
(
2008
).
24.
Caserta
,
S.
, and
S.
Guido
, “
Vorticity banding in biphasic polymer blends
,”
Langmuir
28
,
16254
16262
(
2012
).
25.
Migler
,
K. B.
, “
String formation in sheared polymer blends: Coalescence, breakup, and finite size effects
,”
Phys. Rev. Lett.
86
,
1023
1026
(
2001
).
26.
Grijpma
,
D. W.
, and
A. J.
Pennings
, “
(Co)polymers of L-lactide, 2. Mechanical properties
,”
Macromol. Chem. Phys.
195
,
1649
1663
(
1994
).
27.
Perego
,
G.
,
G. D.
Gella
, and
C.
Bastioli
, “
Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties
,”
J. Appl. Polym. Sci.
59
,
37
43
(
1996
).
28.
Dorgan
,
J.
, and
J.
Williams
, “
Melt rheology of poly(lactic acid): Entanglement and chain architecture effects
,”
J. Rheol.
43
,
1141
1155
(
1999
).
29.
Dorgan
,
J.
,
J.
Janzen
,
M.
Clayton
,
S.
Hait
, and
D.
Knauss
, “
Melt rheology of variable L-content poly(lactic acid)
,”
J. Rheol.
49
,
607
619
(
2005
).
30.
Rasal
,
R. M.
,
A. V.
Janorkar
, and
D. E.
Hirt
, “
Poly(lactic acid) modifications
,”
Prog. Polym. Sci.
35
,
338
356
(
2010
).
31.
Nofar
,
M.
, and
C. B.
Park
, “
Poly (lactic acid) foaming
,”
Prog. Polym. Sci.
39
,
1721
1741
(
2014
).
32.
Saeidlou
,
S.
,
M.
Huneault
,
H.
Li
, and
C. B.
Park
, “
Poly(lactic acid) crystallization
,”
Prog. Polym. Sci.
37
,
1657
1677
(
2012
).
33.
Gu
,
S. Y.
,
K.
Zhang
,
J.
Ren
, and
H.
Zhan
, “
Melt rheology of polylactide/poly(butylenes adipate-co-terephthalate) blends
,”
Carbohydr. Polym.
74
,
79
85
(
2008
).
34.
Jiang
,
L.
,
M. P.
Wolcott
, and
J.
Zhang
, “
Study of Biodegradable Polylactide/Poly(butylenes adipate-co-terephthalate) Blends
,”
Biomacromolecules
7
,
199
207
(
2006
).
35.
Ren
,
J.
,
H.
Fu
,
T.
Ren
, and
W.
Yuan
, “
Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate)
,”
Carbohydr. Polym.
77
,
576
582
(
2009
).
36.
Eslami
,
H.
, and
M. R.
Kamal
, “
Elongational rheology of biodegradable poly(lactic acid)/poly[(butylenes succinate)-co-adipate] binary blends and poly(lactic acid)/poly[(butylenes succinate)-co-adipate]/clay ternary nanocomposites
,”
J. Appl. Polym. Sci.
127
,
2290
2306
(
2013
).
37.
Eslami
,
H.
, and
M. R.
Kamal
, “
Effect of a chain extender on the rheological and mechanical properties of biodegradable poly(lactic acid)/poly[(butylenes succinate)-co-adipate] Blends
,”
J. Appl. Polym. Sci.
129
,
2418
2428
(
2013
).
38.
Palierne
,
J. F.
, “
Linear rheology of viscoelastic emulsions with interfacial tension
,”
Rheol. Acta
29
,
204
214
(
1990
).
39.
Jalali Dil
,
E.
,
P. J.
Carreau
, and
B. D.
Favis
, “
Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
,”
Polymer
68
,
202
212
(
2015
).
40.
Wu
,
D.
,
L.
Yuan
,
E.
Laredo
,
M.
Zhang
, and
W.
Zhou
, “
Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend
,”
Ind. Eng. Chem. Res.
51
,
2290
2298
(
2012
).
41.
Saltikov
,
S. A.
, “
The determination of the size distribution of particles in an opaque material from a measurement of the size distribution of their section
,” in
Stereology
, edited by
H.
Elias
(
Springer-Verlag
,
New York
,
1967
), pp.
163
173
.
42.
Stadler
,
F. J.
, and
C.
Bailly
, “
A new method for the calculation of continuous relaxation spectra from dynamic-mechanical data
,”
Rheol. Acta
48
,
33
49
(
2009
).
43.
Graebling
,
D.
,
R.
Muller
, and
J. F.
Palierne
, “
Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids
,”
Macromolecules
26
,
320
329
(
1993
).
44.
Bousmina
,
M.
,
A.
Ait-Kadi
, and
J. B.
Faisant
, “
Determination of shear rate and viscosity from batch mixer data
,”
J. Rheol.
43
,
415
433
(
1999
).
45.
Grace
,
H. P.
, “
Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems
,”
Chem. Eng. Commun.
14
,
225
277
(
1982
).
46.
Davies
,
A. R.
, and
R. S.
Anderssen
, “
Sampling localization in determining the relaxation spectrum
,”
J. Non-Newtonian Fluid Mech.
73
,
163
179
(
1997
).
47.
He
,
C.
,
P.
Wood-Adams
, and
J. M.
Dealy
, “
Broad frequency range characterization of molten polymers
,”
J. Rheol.
48
,
711
724
(
2004
).
You do not currently have access to this content.