Rheological measurements on a model thixotropic suspension by Dullaert and Mewis [J. Non-Newtonian Fluid Mech. 139(1–2), 21–30 (2006); Rheol. Acta 45, 23–32 (2005)] are extended to include large amplitude oscillatory shear (LAOS) flow, shear flow reversal, and a novel unidirectional LAOS flow to provide an extended rheological data set for testing constitutive models. We use this extended data set to test a new structure-based model developed by improving the Delaware thixotropic model [A. Mujumdar et al., J. Non-Newtonian Fluid Mech. 102, 157–178 (2002); A. J. Apostolidis et al., J. Rheol. 59, 275–298 (2015)]. Model parameters are determined from steady, small amplitude oscillatory, and step shear rate tests. Holding those parameters fixed, model predictions are compared to LAOS experiments. Similar comparisons are made for three contemporary models from the literature. Two of these models use a scalar internal structural parameter and include the modified Jeffreys model proposed by de Souza Mendes and Thompson [Rheol. Acta 52, 673–694 (2013)]. The third model is based on fluidity additivity [F. Bautista et al., J. Non-Newtonian Fluid Mech. 80, 93–113 (1999)]. A common weakness in all models is shown to be the use of scalar order parameters that cannot account for the reversal of flow directionality inherent in LAOS flow. This is further illustrated by comparison with flow reversal and unidirectional LAOS experiments.

1.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
2.
Larson
,
R. G.
, “
Constitutive equations for thixotropic fluids
,”
J. Rheol.
59
,
595
611
(
2015
).
3.
Dullaert
,
K.
, and
J.
Mewis
, “
A structural kinetics model for thixotropy
,”
J. Non-Newtonian Fluid Mech.
139
(
1–2
),
21
30
(
2006
).
4.
Dullaert
,
K.
, and
J.
Mewis
, “
A model system for thixotropy studies
,”
Rheol. Acta
45
,
23
32
(
2005
).
5.
Mujumdar
,
A.
,
A. N.
Beris
, and
A. B.
Metzner
, “
Transient phenomena in thixotropic systems
,”
J. Non-Newtonian Fluid Mech.
102
,
157
178
(
2002
).
6.
Apostolidis
,
A. J.
,
M. J.
Armstrong
, and
A. N.
Beris
, “
Modeling of human blood rheology in transient shear flows
,”
J. Rheol.
59
,
275
298
(
2015
).
7.
de Souza Mendes
,
P. R.
, and
R. L.
Thompson
, “
A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids
,”
Rheol. Acta
52
,
673
694
(
2013
).
8.
Bautista
,
F.
,
J. M.
de Santos
,
J. E.
Puig
, and
O.
Manero
, “
Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions
,”
J. Non-Newtonian Fluid Mech.
80
,
93
113
(
1999
).
9.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University Press
,
Cambridge
,
2012
).
10.
Dullaert
,
K.
, “
Constitutive equations for thixotropic dispersions
,” Ph.D. thesis,
Katholieke Universiteit Leuven
,
Leuven, Belgium
,
2005
.
11.
Mewis
,
J.
, “
Thixotropy—A general review
,”
J. Non-Newtonian Fluid Mech.
6
,
1
20
(
1979
).
12.
Morrison
,
F.
,
Understanding Rheology
(
Oxford University
,
New York
,
2001
).
13.
Koopman
,
D. C.
, “
Review of rheology models for Hanford waste blending
,”
Report No. SRNL-STI-2013-00423
, Revision 0. 1-16, Department of Energy,
2013
.
14.
Lichtenstein
,
N. D.
, “
The Hanford nuclear waste site: A legacy of risk, cost, and inefficiency
,”
Nat. Resour. J.
44
,
809
838
(
2004
).
15.
Bureau
,
M.
,
J. C.
Healy
,
D.
Bourgoin
, and
M.
Joly
, “
Etude rhéologique en régime transitoire de quelques échantillons de sangs humains artificiellement modifies
,”
Rheol. Acta
18
,
756
768
(
1979
).
16.
Bureau
,
M.
,
J. C.
Healy
,
D.
Bourgoin
, and
M.
Joly
, “
Rheological hysteresis of blood at low shear rate
,”
Biorheology
17
,
191
203
(
1980
).
17.
Sousa
,
P. C.
,
J.
Carneiro
,
R.
Vaz
,
A.
Cerejo
,
F. T.
Pinho
,
M. A.
Alves
, and
M. S. N.
Oliveira
, “
Shear viscosity and nonlinear behavior of whole blood under large amplitude oscillatory shear
,”
Biorheology
50
,
269
282
(
2013
).
18.
Grmela
,
M.
,
A.
Ammar
,
F.
Chinesta
, and
G.
Maitrejean
, “
A mesoscopic rheological model of moderately concentrated colloids
,”
J. Non-Newtonian Fluid Mech.
212
,
1
12
(
2014
).
19.
Cranford
,
S.
:
M. J.
Buehler
, “
Coarse-graining parameterization and multiscale simulation of hierarchical systems
,” in
Multiscale Modeling: From Atoms to Devices
(
CRC
,
Boca Raton, FL
,
2010
), Chap. 2.
20.
Goodeve
,
C. F.
, “
A general theory of thixotropy and viscosity
,”
Trans. Faraday Soc.
35
,
342
358
(
1939
).
21.
Barnes
,
H.
, “
Thixotropy—A review
,”
J. Non-Newtonian Fluid Mech.
70
,
1
33
(
1997
).
22.
Moore
,
F.
, “
The rheology of ceramic slips and bodies
,”
Trans. Br. Ceram. Soc.
58
,
470
494
(
1959
).
23.
Fredrickson
,
A. G.
, “
A model for the thixotropy of suspensions
,”
AIChE J.
16
(
3
),
436
441
(
1970
).
24.
de Souza Mendes
,
P. R.
, “
Modeling the thixtropic behavior of structured fluids
,”
J. Non-Newtonian Fluid Mech.
164
,
66
75
(
2009
).
25.
Roussel
,
N.
,
R.
Le Roy
, and
P.
Coussot
, “
Thixotropy modelling at local and macrostcopic scales
,”
J. Non-Newtonian Fluid Mech.
117
,
85
95
(
2004
).
26.
Coussot
,
P.
,
A. I.
Leonov
, and
J. M.
Piau
, “
Rheology of concentrated dispersed systems in a low molecular weight matrix
,”
J. Non-Newtonian Fluid Mech.
46
,
179
217
(
1993
).
27.
Bird
,
B. R.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
John Wiley and Sons
,
New York, NY
,
1987
).
28.
Kim
,
J. M.
,
A. P. R.
Eberle
,
A. K.
Gurnon
,
L.
Porcar
, and
N. J.
Wagner
, “
The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)
,”
J. Rheol.
58
(
5
),
1301
1328
(
2014
).
29.
Eberle
,
A. P. R.
, and
L.
Porcar
, “
Flow-SANS and Rheo-SANS applied to soft matter
,”
Curr. Opin. Colloid Interface Sci.
17
,
33
43
(
2012
).
30.
Pignon
,
F.
,
A.
Magnin
, and
J.
Piau
, “
Butterfly light scattering of a sheared thixotropic clay gel
,”
Phys. Rev. Lett.
79
(
23
),
4689
4692
(
1997
).
31.
De Bruyn
,
J. R.
,
F.
Pignon
,
E.
Tsabet
, and
A.
Magnin
, “
Micron-scale origin of the shear-induced structure in Laponite-poly(ethylene oxide) dispersions
,”
Rheol. Acta
47
,
63
73
(
2007
).
32.
Xu
,
B.
, and
J. F.
Gilchrist
, “
Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions
,”
J. Chem. Phys.
140
,
204903
(
2014
).
33.
Lin
,
N. Y. C.
,
J. H.
McCoy
,
X.
Cheng
,
B.
Leahy
,
J. N.
Israelachvili
, and
I.
Cohen
, “
A multi-axis confocal rheoscope for studying shear flow of structured fluids
,”
Rev. Sci. Instrum.
85
,
033905
(
2014
).
34.
von Smoluchowski
,
M.
, “
Experiments on a mathematical theory of kinetic coagulation of colloid solutions
,”
Z. Phys. Chem. Stoechiom. Verwandtschaftsl.
92
(
2
),
129
168
(
1917
).
35.
von Smoluchowski
,
M.
, “
Theoretical observations on the viscosity of colloides
,”
Kolloid-Z.
18
(
5
),
190
195
(
1916
).
36.
Dullaert
,
K.
, and
J.
Mewis
, “
Thixotropy: Build-up and breakdown curves during flow
,”
J. Rheol.
49
(
6
),
1213
1230
(
2005
).
37.
Dimitriou
,
C. J.
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)
,”
J. Rheol.
57
(
1
),
27
70
(
2013
).
38.
Giacomin
,
A. J.
, and
J. M.
Dealy
, Large-amplitude oscillatory shear,
Techniques in Rheological Measurement
(
Chapman and Hall
,
London
,
1993
).
39.
Jacob
,
A. R.
,
A. P.
Deshpande
, and
L.
Bouteiller
, “
Large amplitude oscillatory shear of supramolecular materials
,”
J. Non-Newtonian Fluid Mech.
206
,
40
56
(
2014
).
40.
Stickel
,
J. J.
,
J. S.
Knutsen
, and
M. W.
Liberatore
, “
Response of elastoviscoplastic materials to large amplitude oscillatory shear flow in parallel-plate and cylindrical-Couette geometries
,”
J. Rheol.
57
(
6
),
1569
1596
(
2013
).
41.
Cheddadi
,
I.
,
P.
Saramito
, and
F.
Graner
, “
Steady couette flows of elastoviscoplastic fluids are nonunique
,”
J. Rheol.
56
(
1
),
213
239
(
2012
).
42.
Saramito
,
P.
, “
A new elastoviscoplastic model based on the Herschel-Bulkley viscoplastic model
,”
J. Non-Newtonian Fluid Mech.
158
,
154
161
(
2009
).
43.
Blackwell
,
B. C.
, and
B. R.
Ewoldt
, “
A simple thixotropic-viscoelastic constitutive model produces unique signatures in large-amplitude oscillatory shear (LAOS)
,”
J. Non-Newtonian Fluid Mech.
208–209
,
27
41
(
2014
).
44.
See supplementary material at http://dx.doi.org/10.1122/1.4943986 additional rheological experiments showing the determination of the elastic stresses and the linear viscoelastic regime, as well as extensive model comparisons and tables of model parameter values along with comparisons of fits and predictions to steady and transient flows, LAOS, flow reversals, and UD-LAOS experiments. A complete digital compilation of the experimental data presented in this manuscript is also included in the form of an excel workbook.
45.
Philippoff
,
W.
, “
Vibrational measurements with large amplitudes
,”
Trans. Soc. Rheol.
10
(
1
),
317
334
(
1966
).
46.
Gurnon
,
A. K.
,
C. R.
Lopez-Barron
,
A. P. R.
Eberle
,
L.
Porcar
, and
N. J.
Wagner
, “
Spatiotemporal stress and structure evolution in dynamically sheared polymer-like micellar solutions
,”
Soft Matter
10
,
2889
2898
(
2014
).
47.
Rogers
,
S.
,
J.
Kohlbrecher
, and
M. P.
Lettinga
, “
The molecular origin of stres generation in worm-like micelles, using a rheo-SANS approach
,”
Soft Matter
8
,
7831
7839
(
2012
).
48.
Helgson
,
M. E.
,
L.
Porcar
,
C.
Lopez-Barron
, and
N. J.
Wagner
, “
Direct observation of flow-concentration coupling in a shear-banding fluid
,”
Phys. Rev. Lett.
105
,
084501
(
2010
).
49.
Lin
,
N. Y. C.
,
X.
Cheng
, and
I.
Cohen
, “
Biaxial shear of confined colloidal hard spheres: the structure and rheology of the vorticity-aligned string phase
,”
Soft Matter
10
,
1969
1976
(
2014
).
50.
Ewoldt
,
R. H.
,
A. E.
Hosoi
, and
G. H.
Mc Kinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
(
6
),
1427
1458
(
2008
).
51.
Cho
,
S. K.
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
A geometrical interpretation of large amplitude oscillatory shear response
,”
J. Rheol.
49
(
3
),
747
758
(
2005
).
52.
Rogers
,
S. A.
, “
A sequence of physical processes determined and quantified in LAOS: An instantaneous local 2D/3D approach
,”
J. Rheol.
56
(
5
),
1129
1151
(
2012
).
53.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
S. C.
Kwang
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
54.
Gurnon
,
A. K.
, and
N. J.
Wagner
, “
Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles
,”
J. Rheol.
56
(
2
),
333
351
(
2012
).
55.
Russel
,
W. B.
,
N. J.
Wagner
, and
J.
Mewis
, “
Divergence in the low shear viscosity for Brownian hard-sphere dispersions: At random close packing or the glass transition?
,”
J. Rheol.
57
(
6
),
1555
1567
(
2013
).
56.
Armstrong
,
M. J.
, “
Investigating and modeling the thixotropic behavior, microstructure, and rheology of complex material
,” Ph.D. thesis,
University of Delaware
,
Newark, DE
,
2015
.
57.
Ogunnaike
,
B. A.
,
Random Phenomena Fundamentals of Probatility and Statistics for Engineers
(
CRC
,
Boca Raton, FL
,
2010
).
58.
Dullaert
,
K.
, and
J.
Mewis
, “
Stress jumps on weakly flocculated dispersions: Steady state and transient results
,”
J. Colloid Interface Sci.
287
,
542
551
(
2005
).
59.
O'Brien
,
V. T.
, and
M. E.
Mackay
, “
Stress components and shear thickening of concentrated hard sphere suspensions
,”
Langmuir
16
(
21
),
7931
7938
(
2000
).
60.
Shih
,
W. H.
,
W. Y.
Shih
,
S. I.
Kim
,
J.
Liu
, and
I. A.
Aksay
, “
Scaling behavior of the elastic properties of colloidal gels
,”
Phys. Rev. A
42
(
8
),
4772
4779
(
1990
).
61.
de Souza Mendes
,
P. R.
,
R. L.
Thompson
,
A. A.
Alicke
, and
R. T.
Leite
, “
The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter
,”
J. Rheol.
58
,
537
561
(
2014
).

Supplementary Material

You do not currently have access to this content.