Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [Xu et al., Rheol. Acta 37, 387–398 (1998)] or transformed to determine dynamic storage and loss moduli [Mason and Weitz, Phys. Rev. Lett. 74, 1250–1253 (1995)]. A prevalent hurdle arises when there is a nondiffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a Péclet number, the MSD statistics are distorted, and thus the path data must be “corrected” for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and consequently the compliance and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of Péclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model, because it affords tunable, subdiffusive MSD statistics consistent with typical 30 s long, experimental observations of microbeads in several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus.

1.
Mason
,
T. G.
, and
D. A.
Weitz
, “
Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids
,”
Phys. Rev. Lett.
74
,
1250
1253
(
1995
).
2.
Mason
,
T. G.
, and
D. A.
Weitz
, “
Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition
,”
Phys. Rev. Lett.
75
,
2770
2773
(
1995
).
3.
Mason
,
T. G.
, “
Estimating the viscoelastic moduli of complex fuids using the generalized Stokes-Einstein equation
,”
Rheol. Acta
39
,
371
378
(
2000
).
4.
Dasgupta
,
B. R.
,
S. Y.
Tee
,
J. C.
Crocker
,
B. J.
Frisken
, and
D. A.
Weitz
, “
Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering
,”
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
65
,
51505
(
2002
).
5.
Xu
,
J.
,
V.
Viasnoff
, and
D.
Wirtz
, “
Compliance of actin filament networks measured by particle-tracking microrheology and diffusing wave spectroscopy
,”
Rheol. Acta
37
,
387
398
(
1998
).
6.
das Neves
,
J.
,
C. M. R.
Rocha
,
M. P.
Gonçalves
,
R. L.
Carrier
,
M.
Amiji
,
M. F.
Bahia
, and
B.
Sarmento
, “
Interactions of microbicide nanoparticles with a simulated vaginal fluid
,”
Mol. Pharm.
9
,
3347
3356
(
2012
).
7.
Lai
,
S. K.
,
Y.-Y.
Wang
,
R.
Cone
,
D.
Wirtz
, and
J.
Hanes
, “
Altering mucus rheology to ‘solidify’ human mucus at the nanoscale
,”
PLoS One
4
,
e4294
(
2009
).
8.
Wang
,
Y.-Y.
,
S. K.
Lai
,
L. M.
Ensign
,
W.
Zhong
,
R.
Cone
, and
J.
Hanes
, “
The microstructure and bulk rheology of human cervicovaginal mucus are remarkably resistant to changes in pH
,”
Biomacromolecules
14
,
4429
4435
(
2013
).
9.
Hill
,
D. B.
,
P. A.
Vasquez
,
J.
Mellnik
,
S. A.
McKinley
,
A.
Vose
,
F.
Mu
,
A. G.
Henderson
,
S. H.
Donaldson
,
N. E.
Alexis
,
R. C.
Boucher
, and
M. G.
Forest
, “
A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease
,”
PLoS One
9
,
e87681
(
2014
).
10.
Schuster
,
B. S.
,
L. M.
Ensign
,
D. B.
Allan
,
J. S.
Suk
, and
J.
Hanes
, “
Particle tracking in drug and gene delivery research: State-of-the-art applications and methods
,”
Adv. Drug Deliver. Rev.
91
,
70
91
(
2015
).
11.
Georgiades
,
P.
,
P. D. A.
Pudney
,
S.
Rogers
,
D. J.
Thornton
, and
T. A.
Waigh
, “
Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins
,”
PLoS One
9
,
e105302
(
2014
).
12.
Georgiades
,
P.
,
P. D. A.
Pudney
,
D. J.
Thornton
, and
T. A.
Waigh
, “
Particle tracking microrheology of purified gastrointestinal mucins
,”
Biopolymers
101
,
366
377
(
2014
).
13.
Macierzanka
,
A.
,
A. R.
Mackie
,
B. H.
Bajka
,
N. M.
Rigby
,
F.
Nau
, and
D.
Dupont
, “
Transport of particles in intestinal mucus under simulated infant and adult physiological conditions: Impact of mucus structure and extracellular DNA
,”
PLoS one
9
,
e95274
(
2014
).
14.
Adler
,
J.
, and
S. N.
Pagakis
, “
Reducing image distortions due to temperature-related microscope stage drift
,”
J. Microsc.
210
,
131
137
(
2003
).
15.
Dangaria
,
J. H.
,
S.
Yang
, and
P. J.
Butler
, “
Improved nanometer-scale particle tracking in optical microscopy using microfabricated fiduciary posts
,”
Biotechniques
42
,
437
440
(
2007
).
16.
Aufderhorst-Roberts
,
A.
,
W. J.
Frith
,
M.
Kirkland
, and
A. M.
Donald
, “
Microrheology and microstructure of Fmoc-derivative hydrogels
,”
Langmuir
30
,
4483
4492
(
2014
).
17.
Savin
,
T.
, and
P. S.
Doyle
, “
Static and dynamic errors in particle tracking microrheology
,”
Biophys. J.
88
,
623
638
(
2005
).
18.
Hasnain
,
I. A.
, and
A. M.
Donald
, “
Microrheological characterization of anisotropic materials
,”
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
73
,
31901
(
2006
).
19.
Fong
,
E. J.
,
Y.
Sharma
,
B.
Fallica
,
D. B.
Tierney
,
S. M.
Fortune
, and
M. H.
Zaman
, “
Decoupling directed and passive motion in dynamic systems: Particle tracking microrheology of sputum
,”
Ann. Biomed. Eng.
41
,
837
846
(
2013
).
20.
Metzler
,
R.
, and
J.
Klafter
, “
The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
,”
J. Phys. A Math. Gen.
37
,
R161
R208
(
2004
).
21.
Lysy
,
M.
,
N. S.
Pillai
,
D. B.
Hill
,
M. G.
Forest
,
J.
Mellnik
,
P.
Vazquez
, and
S. A.
McKinley
, “
Model comparison and assessment for single particle tracking in biological fluids
,”
J. Am. Stat. Assoc.
(to be published).
22.
Einstein
,
A.
, “
On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat
,”
Ann. Phys. Leipzig
17
,
549
560
(
1905
).
23.
Qian
,
H.
,
M. P.
Sheetz
, and
E. L.
Elson
, “
Single particle tracking. Analysis of diffusion and flow in two-dimensional systems
,”
Biophys. J.
60
,
910
921
(
1991
).
24.
Michalet
,
X.
, “
Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium
,”
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
82
,
41914
(
2010
).
25.
Gal
,
N.
,
D.
Lechtman-Goldstein
, and
D.
Weihs
, “
Particle tracking in living cells: A review of the mean square displacement method and beyond
,”
Rheol. Acta
52
,
425
443
(
2013
).
26.
Weihs
,
D.
,
M. A.
Teitell
, and
T. G.
Mason
, “
Simulations of complex particle transport in heterogeneous active liquids
,”
Microfluid. Nanofluid.
3
,
227
237
(
2007
).
27.
Kou
,
S. C.
, and
X. S.
Xie
, “
Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule
,”
Phys. Rev. Lett.
93
,
180603
(
2004
).
28.
Kou
,
S. C.
, “
Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins
,”
Ann. Appl. Stat.
2
,
501
535
(
2008
).
29.
Caspi
,
A.
,
R.
Granek
, and
M.
Elbaum
, “
Enhanced diffusion in active intracellular transport
,”
Phys. Rev. Lett.
85
,
5655
5658
(
2000
).
30.
Seisenberger
,
G.
,
M. U.
Ried
,
T.
Endreß
,
H.
Büning
,
M.
Hallek
, and
C.
Bräuchle
, “
Real-time single-molecule imaging of the infection pathway of an Adeno-associated virus
,”
Science
294
,
1929
1933
(
2001
).
31.
Valentine
,
M. T.
,
P. D.
Kaplan
,
D.
Thota
,
J. C.
Crocker
,
T.
Gisler
,
R. K.
Prud'homme
,
M.
Beck
, and
D. A.
Weitz
, “
Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking
,”
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
64
,
61506
(
2001
).
32.
Steele
,
J. M.
,
Stochastic Calculus and Financial Applications
(
Springer
,
New York
,
2001
).
33.
Mandelbrot
,
B. B.
, and
J. W.
Van Ness
, “
Fractional Brownian motions, fractional noises and applications
,”
SIAM Rev.
10
,
422
437
(
1968
).
34.
Fulcher
,
M. L.
,
S.
Gabriel
,
K. A.
Burns
,
J. R.
Yankaskas
, and
S. H.
Randell
, “
Well-differentiated human airway epithelial cell cultures
,”
Methods Mol. Med.
107
,
183
206
(
2005
).
35.
Matsui
,
H.
,
M. W.
Verghese
,
M.
Kesimer
,
U. E.
Schwab
,
S. H.
Randell
,
J. K.
Sheehan
,
B. R.
Grubb
, and
R. C.
Boucher
, “
Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces
,”
J. Immun.
175
,
1090
1099
(
2005
).
36.
Matsui
,
H.
,
V. E.
Wagner
,
D. B.
Hill
,
U. E.
Schwab
,
T. D.
Rogers
,
B.
Button
,
R. M.
Taylor
,
R.
Superfine
,
M.
Rubinstein
,
B. H.
Iglewski
, and
R. C.
Boucher
, “
A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
18131
18136
(
2006
).
37.
Hill
,
D. B.
, and
B.
Button
, “
Establishment of respiratory air-liquid interface cultures and their use in studying mucin production, secretion, and function
,” in
Mucins: Methods and Protocols
, edited by
M. A.
McGucking
and
D. J.
Thornton
(
Springer
,
New York
,
2012
), pp.
245
258
.
38.
Kesimer
,
M.
,
S.
Kirkham
,
R. J.
Pickles
,
A. G.
Henderson
,
N. E.
Alexis
,
G.
Demaria
,
D.
Knight
,
D. J.
Thornton
, and
J. K.
Sheehan
, “
Tracheobronchial air-liquid interface cell culture: A model for innate mucosal defense of the upper airways?
Am. J. Physiol. Lung Cell. Mol. Physiol.
296
,
L92
L100
(
2009
).
39.
Button
,
B.
,
L.-H.
Cai
,
C.
Ehre
,
M.
Kesimer
,
D. B.
Hill
,
J. K.
Sheehan
,
R. C.
Boucher
, and
M.
Rubinstein
, “
A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia
,”
Science
337
,
937
941
(
2012
).
40.
Anderson
,
W. H.
,
R. D.
Coakley
,
B.
Button
,
A. G.
Henderson
,
L.
Kirby
,
N. E.
Alexis
,
D. B.
Peden
,
E. R.
Lazarowski
,
C. W.
Davis
,
S.
Bailey
,
F.
Fuller
,
M.
Almond
,
B.
Qaqish
, and
E.
Bordonali
, “
The relationship of mucus concentration (hydration) to mucus osmotic pressure and transport in chronic bronchitis
,”
Am. J. Resp. Crit. Care
192
,
182
190
(
2015
).
41.
Lai
,
S. K.
,
D. E.
O'Hanlon
,
S.
Harrold
,
S. T.
Man
,
Y.-Y.
Wang
,
R.
Cone
, and
J.
Hanes
, “
Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
1482
1487
(
2007
).
42.
Cone
,
R. A.
, “
Barrier properties of mucus
,”
Adv. Drug. Deliver. Rev.
61
,
75
85
(
2009
).
43.
Lai
,
S. K.
,
Y.-Y.
Wang
,
D.
Wirtz
, and
J.
Hanes
, “
Micro-and macrorheology of mucus
,”
Adv. Drug. Deliver. Rev.
61
,
86
100
(
2009
).
44.
Lai
,
S. K.
,
Y.-Y.
Wang
,
K.
Hida
,
R.
Cone
, and
J.
Hanes
, “
Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
598
603
(
2010
).
45.
Dawson
,
M.
,
D.
Wirtz
, and
J.
Hanes
, “
Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport
,”
J. Bio. Chem.
278
,
50393
50401
(
2003
).
46.
Schuster
,
B. S.
,
J. S.
Suk
,
G. F.
Woodworth
, and
J.
Hanes
, “
Nanoparticle diffusion in respiratory mucus from humans without lung disease
,”
Biomaterials
34
,
3439
3446
(
2013
).
47.
Waigh
,
T. A.
, “
Microrheology of complex fluids
,”
Rep. Prog. Phys.
68
,
685
742
(
2005
).
48.
Levy
,
R.
,
D. B.
Hill
,
M. G.
Forest
, and
J. B.
Grotberg
, “
Pulmonary fluid flow challenges for experimental and mathematical modeling
,”
Integr. Comp. Biol.
54
,
985
1000
(
2014
).
49.
Davidson
,
A. C.
,
Statistical Models
(
Cambridge University
,
New York
,
2003
).
50.
Bareiss
,
E. H.
, “
Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices
,”
Numer. Math.
13
,
404
424
(
1969
).
51.
Durbin
,
J.
, “
The fitting of time-series models
,”
Rev. Inst. Int. Stat.
28
,
233
244
(
1960
).
52.
Ljung
,
L.
,
System Identification: Theory for the User
(
Prentice-Hall
,
Englewood Cliffs
,
1987
).
53.
Winter
,
H. H.
, “
Can the gel point of a crosslinking polymer be detected by the G'-G" crossover?
,”
Polym. Eng. Sci.
27
,
1698
1702
(
1987
).
54.
See Supplementary Material at http://dx.doi.org/10.1122/1.4943988 for MLE pseudocode.

Supplementary Material

You do not currently have access to this content.