The improved anisotropic rotary diffusion (iARD) model was previously regarded as a suitable description of anisotropic orientation states for long fibers in concentrated suspensions. However, the iARD tensor does not pass the classic rheological rule of Euclidean objectivity, namely, material frame indifference. It is hard to ignore the nonobjective effect due to the fact that different coordinate systems may yield different answers. Such an issue can be attributed to the iARD tensor related to the nonobjective velocity-gradient tensor. We therefore proposed a new iARD tensor, which depends on the square of the objective rate-of-deformation tensor. It is important to differentiate between the original Phelps–Tucker anisotropic rotary diffusion tensor and the objective iARD tensor via computing their first invariants. Furthermore, we validated this new iARD model's accuracy in predicting a distinct, broader core-shell orientation structure of injection-molded long-fiber composites through careful experimental verification.

1.
Advani
,
S. G.
,
Flow and Rheology in Polymer Composites Manufacturing
(
Elsevier
,
New York
,
1994
).
2.
Jeffery
,
G. B.
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. A
102
,
161
179
(
1922
).
3.
Folgar
,
F.
, and
C. L.
Tucker
 III
, “
Orientation behavior of fibers in concentrated suspensions
,”
J. Reinf. Plast. Compos.
3
,
98
119
(
1984
).
4.
Advani
,
S. G.
, and
C. L.
Tucker
 III
, “
The use of tensors to describe and predict fiber orientation in short fiber composites
,”
J. Rheol.
31
,
751
784
(
1987
).
5.
Phelps
,
J. H.
, and
C. L.
Tucker
 III
, “
An anisotropic rotary diffusion model for fiber orientation in short- and long-fiber thermoplastics
,”
J. Non-Newtonian Fluid Mech.
156
,
165
176
(
2009
).
6.
Wang
,
J.
,
J. F.
O'Gara
, and
C. L.
Tucker
 III
, “
An objective model for slow orientation kinetics in concentrated fiber suspensions: Theory and rheological evidence
,”
J. Rheol.
52
,
1179
1200
(
2008
).
7.
Wang
,
J.
, and
X.
Jin
, “
Comparison of recent fiber orientation models in Autodesk moldflow insight simulations with measured fiber orientation data
,” in
Proceedings of the Polymer Processing Society, 26th Annual Meeting
,
July 4–8, 2010
,
Banff, Canada
(
2010
).
8.
Kleindel
,
S.
,
D.
Salaberger
,
R.
Eder
,
H.
Schretter
, and
C.
Hochenauer
, “
Prediction and validation of short fiber orientation in a complex injection molded part with chunky geometry
,”
Int. Polym. Process.
30
,
366
380
(
2015
).
9.
Wang
,
J.
,
B. N.
Nguyen
,
R.
Mathur
,
B.
Sharma
,
M. D.
Sangid
,
F.
Costa
,
X.
Jin
,
C. L.
Tucker
 III
, and
L. S.
Fifield
, “
Fiber orientation in injection molded long carbon fiber thermoplastic composites
,” in
SPE ANTEC Conference
, Technical Papers,
May 1–5, 2015
Orlando, FL
(
2015
).
10.
Nguyen
,
B. N.
,
L. S.
Fifield
,
S. A.
Kijewski
,
M. D.
Sangid
,
J.
Wang
,
F.
Costa
,
C. L.
Tucker
 III
,
R. N.
Mathur
,
U. N.
Gandhi
, and
S.
Mori
,
Predictive engineering tools for injection-molded long-carbon-fiber thermoplastic composites, The US Department of Energy, Pacific Northwest National Laboratory
,
PNNL Report Under Contract No. DE-AC05-76RL01830 PNNL-24259
,
2015
.
11.
van Haag
,
J.
,
C.
Bontenackels
, and
C.
Hopmann
, “
Fiber orientation prediction of long fiber-reinforced thermoplastics: Optimization of model parameters
,” in
SPE ANTEC Conference
, Technical Papers,
May 1–5, 2015
,
Orlando, FL
(
2015
).
12.
Tseng
,
H.-C.
,
R.-Y.
Chang
, and
C.-H.
Hsu
, “
Method and computer readable media for determining orientation of fibers in a fluid
,” U.S. patent No. 8,571,828 (
2013
).
13.
Tseng
,
H.-C.
,
R.-Y.
Chang
, and
C.-H.
Hsu
, “
Phenomenological improvements to predictive models of fiber orientation in concentrated suspensions
,”
J Rheol
57
,
1597
1631
(
2013
).
14.
Foss
,
P. H.
,
H.-C.
Tseng
,
J.
Snawerdt
,
Y.-J.
Chang
,
W.-H.
Yang
, and
C.-H.
Hsu
, “
Prediction of fiber orientation distribution in injection molded parts using Moldex3D simulation
,”
Polym. Compos.
35
,
671
680
(
2014
).
15.
Kunc
,
V.
,
C. D.
Warren
,
A.
Yocum
,
C.
Schutte
, and
E.
Owens
, Predictive engineering tools for injection-molded long carbon fiber thermoplastic composites, Oak Ridge National Laboratory, FY 2014 Annual Progress Report-Lightweight Materials, US Department of Energy,
Report No. 206-215
,
2014
.
16.
Goris
,
S.
,
M.
Herchet
,
C.
Perez
,
U.
Gandhi
, and
T. A.
Osswald
, “
Impact of fiber orientation distribution within a d-LFT strand on warpage of a compression molded part
,” in
SPE ANTEC Conference
, Technical Papers, April 28–30, 2014, Las Vegas, NV (
2014
).
17.
Shen
,
H.
,
S.
Nutt
, and
D.
Hull
, “
Direct observation and measurement of fiber architecture in short fiber-polymer composite foam through micro-CT imaging
,”
Compos. Sci. Technol.
64
,
2113
2120
(
2004
).
18.
Wonisch
,
A.
, and
A.
Wüst
, “
More precise part design: Accurate simulation of fiber orientation of glass fiber-reinforced plastics
,”
Kunstst. Int.
9
,
80
83
(
2014
).
19.
Svendsen
,
B.
, and
A.
Bertram
, “
On frame-indifference and form-invariance in constitutive theory
,”
Acta Mech.
132
,
195
207
(
1999
).
20.
Zheng
,
R.
,
R. I.
Tanner
, and
X.-J.
Fan
,
Injection Molding: Integration of Theory and Modeling Methods
(
Springer
,
Berlin
,
2011
).
21.
Tseng
,
H.-C.
,
Y.-J.
Chang
,
C.-H.
Hsu
, and
R.-Y.
Chang
, “
Progress on fiber concentration for injection molding simulation of fiber reinforced thermoplastics
,” in
SPE ANTEC Conference
, Technical Papers,
April 28–30, 2014
,
Las Vegas, NV
(
2014
).
22.
Cintra
, Jr.,
J. S.
, and
C. L.
Tucker
 III
, “
Orthotropic Closure Approximations for Flow-Induced Fiber Orientation
,”
J. Rheol.
39
,
1095
1122
(
1995
).
23.
VerWeyst
,
B. E.
, “
Numerical predictions of flow-induced fiber orientation in three-dimensional geometries
,” Ph.D. thesis,
University of Illinois at Urbana-Champaign
, Champaign, IL,
1998
.
24.
Chung
,
D. H.
, and
T. H.
Kwon
, “
Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation
,”
J. Rheol.
46
,
169
194
(
2002
).
25.
Sbalzarini
,
I. F.
,
A.
Hayer
,
A.
Helenius
, and
P.
Koumoutsakos
, “
Simulations of (an)isotropic diffusion on curved biological surfaces
,”
Biophys. J.
90
,
878
885
(
2006
).
26.
Phelps
,
J. H.
, “
Processing-microstructure models for short- and long-fiber thermoplastic composites
,” Ph.D. thesis,
University of Illinois at Urbana-Champaign
, Champaign, IL,
2009
.
27.
Nguyen
,
N.
,
X.
Jin
,
J.
Wang
,
J. H.
Phelps
,
C. L.
Tucker
 III
,
V.
Kunc
,
S. K.
Bapanapalli
, and
M. T.
Smith
, Implementation of new process models for tailored polymer composite structures into processing software packages, The US Department of Energy, Pacific Northwest National Laboratory,
PNNL Report Under Contract No. DE-AC05-76RL01830 PNNL-19185
,
2010
.
28.
Nguyen
,
N.
,
X.
Jin
,
J.
Wang
,
V.
Kunc
, and
C. L.
Tucker
 III
, Validation of new process models for large injection-molded long-fiber thermoplastic composite structures, The US Department of Energy, Pacific Northwest National Laboratory,
PNNL Report Under Contract No. DE-AC05-76RL01830 PNNL-21165
,
2012
.
You do not currently have access to this content.