The solidification of waxy components during the cool down of waxy crude oils in pipelines may provide complex yield stress fluid behavior with time-dependent characteristics, which has a critical impact for predicting flow restart after pipeline shut-in. Here, from a previous set of data at a local scale with the help of Magnetic Resonance Imaging and a new full set of data for various flow and temperature histories, we give a general picture of the rheological behavior of waxy crude oils. The tests include start flow tests at different velocities or creep tests at different stress levels, abrupt changes of velocity level, steady flow, after cooling under static or flowing conditions. We show that when the fluid has been cooled at rest it forms a structure that irreversibly collapses during the startup flow. Under these conditions, the evolution of the apparent viscosity mainly depends on the deformation undergone by the fluid for low or moderate deformation and starts to significantly depend on the shear rate for larger values. Even the (apparent) flow curve of statically cooled waxy crude oils was observed to be dependent on the flow history, more specifically on the maximum shear rate experienced by the material. After being sufficiently sheared, i.e., achieving an equilibrium state, the rheological behavior is that of a simple liquid for shear rates lower than the maximum historical one. A model is proposed to represent those trends experimentally observed. In contrast with most previous works in that field, the model is built without any a priori assumption based on classical behavior of a class of fluids. Finally, it is shown that this model predicts the flow characteristics of these materials under more complex flow histories (sweep tests, sudden shear rate decrease) much better than the so far most often used (Houska) model.

1.
Cawkwell
,
M. G.
, and
M. E.
Charles
, “
Characterization of Canadian artic thixotropic gelled crude oils utilizing an eight-parameter model
,”
J. Pipelines
7
,
251
264
(
1989
).
2.
Chang
,
C.
,
D. V.
Boger
, and
Q. D.
Nguyen
, “
The yielding of waxy crude oils
,”
Ind. Eng. Chem. Res.
37
,
1551
1559
(
1998
).
3.
Chang
,
C.
,
Q. D.
Nguyen
, and
H. P.
Rønningsen
, “
Isothermal start-up of pipeline transporting waxy crude oil
,”
J. Non-Newtonian Fluid Mech.
87
,
127
154
(
1999
).
4.
Coussot
,
P.
,
Rheometry of pastes, suspensions, and granular materials: Applications in industry and environment
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2005
).
5.
Coussot
,
P.
,
A. I.
Leonov
, and
J. M.
Piau
, “
Rheology of concentrated dispersed systems in low molecular weight matrix
,”
J. Non-Newtonian Fluid Mech.
46
,
179
217
(
1993
).
6.
Coussot
,
P.
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Viscosity bifurcation in thixotropic, yielding fluids
,”
J. Rheol.
46
(
3
),
573
589
(
2002
).
7.
de Souza Mendes
,
P. R.
, “
Thixotropic elasto-viscoplastic model for structured fluids
,”
Soft Matter
7
,
2471
2483
(
2011
).
8.
Dimitriou
,
C. J.
, and
G. H.
McKinley
, “
A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid
,”
Soft Matter
10
,
6619
6644
(
2014
).
9.
Ding
,
J.
,
J.
Zhang
,
H.
Li
,
F.
Zhang
, and
X.
Yang
, “
Flow behavior of Daqing waxy crude oil under simulated pipelining conditions
,”
Energy Fuels
20
,
2531
2536
(
2006
).
10.
Dullaert
,
K.
, and
J.
Mewis
, “
A structural kinetics model for thixotropy
,”
J. Non-Newtonian Fluid Mech.
139
,
21
30
(
2006
).
11.
Ekweribe
,
C.
,
F.
Civan
,
H. S.
Lee
, and
P.
Singh
, “
Effect of system pressure on restart conditions of subsea pipelines
,” in
SPE Annual Technical Conference and Exhibition
(
2008
), Vol.
3
, pp.
1754
1775
, SPE 115672.
12.
El-Gendy
,
H.
,
M.
Alcoutlabi
,
M.
Jemmett
,
M.
Deo
,
J.
Magda
,
R.
Venkatesan
, and
A.
Montesi
, “
The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry
,”
AIChE
58
,
302
311
(
2012
).
13.
Hénaut
,
I.
, and
F.
Brucy
, “
Description rhéologique des bruts paraffiniques gélifiés
,”
Congrés du Groupe Français de Rhéologie
,
2001
.
14.
Hénaut
,
I.
,
O.
Vincké
, and
F.
Brucy
, “
Waxy crude oil restart: Mechanical properties of gelled oils
,” in
SPE Annual Technical Conference and Exhibition
(
1999
), SPE 56771.
15.
Houska
,
M.
, “
Engineering aspects of the rheology of thixotropic liquids
,” Ph.D. thesis,
Faculty of Mechanical Engineering, Czech Technical University of Prague
-
CVUT
,
1981
.
16.
Jia
,
B.
, and
J.
Zhang
, “
Yield behavior of waxy crude gel: Effect of isothermal structure development before prior applied stress
,”
Ind. Eng. Chem. Res.
51
,
10977
10982
(
2012
).
17.
Kané
,
M.
,
M.
Djabourov
, and
J. L.
Volle
, “
Rheology and structure of waxy crude oils in quiescent and under shearing conditions
,”
Fuel
83
,
1591
1605
(
2004
).
18.
Kané
,
M.
,
M.
Djabourov
,
J. L.
Volle
,
J. P.
Lechaire
, and
G.
Frebourg
, “
Morphology of paraffin crystals in waxy crude oils cooled in quiescent conditions and under flow
,”
Fuel
82
,
127
135
(
2003
).
19.
Lin
,
M.
,
C.
Li
,
F.
Yang
, and
Y.
Ma
, “
Isothermal structure development of Qinghai waxy crude oil after static and dynamic cooling
,”
J. Pet. Sci. Technol.
77
,
351
358
(
2011
).
20.
Lopes-da-Silva
,
J. A.
, and
J. A. P.
Coutinho
, “
Analysis of the isothermal structure development in waxy crude oils under quiescent conditions
,”
Energy Fuels
21
,
3612
3617
(
2007
).
21.
Magda
,
J. J.
,
H.
El-Gendy
,
K.
Oh
,
M. D.
Deo
,
A.
Montesi
, and
R.
Venkatesan
, “
Time-dependent rheology of a model waxy crude oil with relevance to gelled pipeline restart
,”
Energy Fuels
23
,
1311
1315
(
2009
).
22.
Marchesini
,
F. H.
,
A. A.
Alicke
,
P. R. de
Souza Mendes
, and
C. M.
Ziglio
, “
Rheological characterization of waxy crude oils: Sample preparation
,”
Energy Fuels
26
(
5
),
2566
2577
(
2012
).
23.
Mendes
,
R.
,
G.
Vinay
,
G.
Ovarlez
, and
P.
Coussot
, “
Reversible and irreversible destructuring flow in waxy oils: An MRI study
,”
J. Non-Newtonian Fluid Mech.
(published online).
24.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid. Interface Sci.
147–148
,
214
227
(
2009
).
25.
Møller
,
P. C. F.
,
S.
Rodts
,
M. A. J.
Michel
, and
D.
Bonn
, “
Shear banding and yield stress in soft glassy materials
,”
Phys. Rev. E
77
,
041507
(
2008
).
26.
Oh
,
K.
,
M.
Jemmett
, and
M.
Deo
, “
Yield behavior of gelled waxy oil: Effect of stress application in creep ranges
,”
Ind. Eng. Chem. Res.
48
,
8950
8953
(
2009
).
27.
Ovarlez
,
G.
,
S.
Rodts
,
X.
Chateau
, and
P.
Coussot
, “
Phenomenology and physical origin of shear localization and shear banding in complex fluids
,”
Rheol. Acta
48
,
831
844
(
2009
).
28.
Philips
,
D. A.
,
I. N.
Forsdyke
,
I. R.
McCracken
, and
P. D.
Ravenscroft
, “
Novel approaches to waxy crude restart: Part 1: Thermal shrinkage of waxy crude oil and the impact for pipeline restart
,”
J. Pet. Sci. Technol.
77
,
237
253
(
2011a
).
29.
Philips
,
D. A.
,
I. N.
Forsdyke
,
I. R.
McCracken
, and
P. D.
Ravenscroft
, “
Novel approaches to waxy crude restart: Part 2: An investigation of flow events following shut down
,”
J. Pet. Sci. Technol.
77
,
286
304
(
2011b
).
30.
Pignon
,
F.
,
A.
Magnin
, and
J.
Piau
, “
Thixotropic colloidal suspensions and flow curves with minimum: Identification of flow regimes and rheometric consequences
,”
J. Rheol.
40
,
573
587
(
1996
).
31.
Rønningsen
,
H. P.
, “
Rheological behaviour of gelled, waxy North Sea crude oils
,”
J. Pet. Sci. Eng.
7
,
177
213
(
1992
).
32.
Rønningsen
,
H. P.
,
B.
Bjorndal
,
A. B.
Hansen
, and
W. B.
Pedersen
, “
Wax precipitation from north sea crude oils. 1. Crystallization and dissolution temperatures, and Newtonian and non-Newtonian flow properties
,”
Energy Fuels
5
,
895
908
(
1991
).
33.
Sestak
,
J.
,
M. E.
Charles
,
M. G.
Cawkwell
, and
M.
Houska
, “
Start-up of gelled crude oil pipelines
,”
J. Pipelines
6
,
15
24
(
1987
).
34.
Tanner
,
R. I.
,
Engineering Rheology
(
Oxford University
,
Oxford
,
2000
).
35.
Teng
,
H.
, and
J.
Zhang
, “
Modeling the thixotropic behavior of waxy crude
,”
Ind. Eng. Chem. Res.
52
,
8079
8089
(
2013
).
36.
Venkatesan
,
R.
,
N. R.
Nagarajan
,
K.
Paso
,
Y. B.
Yi
,
A. M.
Sastry
, and
H. S.
Fogler
, “
The strength of paraffin gels formed under static and flow conditions
,”
Chem. Eng. Sci.
60
,
3587
3598
(
2005
).
37.
Visintin
,
R. F. G.
,
R.
Lapasin
,
E.
Vignati
,
P.
D'Antona
, and
T. P.
Lockhart
, “
Rheological behavior and structural interpretation of waxy crude oil gels
,”
Langmuir
21
,
6240
6249
(
2005
).
38.
Wachs
,
A.
,
G.
Vinay
, and
I.
Frigaard
, “
A 1.5D numerical model for the start up of weakly compressible flow of a viscoplastic and thixotropic fluid in pipelines
,”
J. Non-Newtonian Fluid Mech.
159
,
81
94
(
2009
).
39.
Wang
,
Y.
, and
Q.
Huang
, “
Evaluation of measurement methods of waxy crude oil thixotropy
,”
J. Dispersion Sci. Technol.
35
(
9
),
1255
1263
(
2014
).
40.
Zhao
,
Y.
,
L.
Kumar
,
K.
Paso
,
H.
Ali
,
J.
Safieva
, and
J.
Sjöblom
, “
Gelation and breakage of model wax-oil systems: Rheological properties and model development
,”
Ind. Eng. Chem. Res.
51
,
8123
8133
(
2012
).
You do not currently have access to this content.