A model is presented to describe flow-induced crystallization in isotactic polypropylene at high shear rates. This model incorporates nonlinear viscoelasticity, compressibility, and nonisothermal process conditions due to shear heating and heat release due to crystallization. Flow-induced nucleation occurs with a rate coupled to the chain backbone stretch associated with the longest mode relaxation time of the polymer melt, obtained from a viscoelastic constitutive model. Flow-induced nuclei propagate in flow direction with a speed related to shear rate, thus forming shish, which increase the viscosity of the material. The viscosity change with formation of oriented fibrillar crystals (known as “shish”) is implemented in a phenomenological manner; shish act as a suspension of fibers with radius equivalent to the radius of the shish plus the attached entangled molecules? The model is implemented in a 2D finite element code and validated with experimental data obtained in a channel flow geometry. Quantitative agreement is observed in terms of pressure drop, apparent crystallinity, parent/daughter ratio, Hermans' orientation, and shear layer thickness. Moreover, simulations for lower flow rates are performed and the results are compared, in a qualitative sense, to experiments from literature.

1.
Avrami
,
M.
, “
Kinetics of phase change. I: General theory
,”
J. Chem. Phys.
7
(
12
),
1103
1112
(
1939
).
2.
Ballard
,
D.
,
P.
Cheshire
,
G.
Longman
, and
J.
Schelten
, “
Small-angle neutron scattering studies of isotropic polypropylene
,”
Polymer
19
,
379
385
(
1978
).
4.
Barham
,
P.
, and
A.
Keller
, “
High-strength polyethylene fibers from solution and gel spinning
,”
J. Mater. Sci.
20
,
2281
2302
(
1985
).
5.
Bernland
,
K.
,
T.
Tervoort
, and
P.
Smith
, “
Phase behavior and optical- and mechanical properties of the binary system isotactic polypropylene and the nucleating/clarifying agent 1,2,3-trideoxy-4,6:5,7-bis-O-[(4-propylphenyl) methylene]-nonitol
,”
Polymer
50
,
2460
2464
(
2010
).
6.
Bogaerds
,
A.
,
A.
Grillet
,
G.
Peters
, and
F.
Baaijens
, “
Stability analysis of polymer shear flows using the eXtended Pom-Pom constitutive equations
,”
J. Non-Newtonian Fluid Mech.
108
,
187
208
(
2002
).
7.
Brooks
,
A.
, and
T.
Hughes
, “
Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations
,”
Comput. Methods Appl. Mech. Eng.
32
,
199
259
(
1982
).
8.
Custódio
,
F.
,
R.
Steenbakkers
,
P.
Anderson
,
G.
Peters
, and
H.
Meijer
, “
Model development and validation of crystallization behavior in injection molding prototype flows
,”
Macromol. Theory Simul.
18
(
9
),
469
494
(
2009
).
9.
D'Avino
,
G.
, and
M.
Hulsen
, “
Decoupled second-order transient schemes for the flow of viscoelastic fluids without a viscous solvent contribution
,”
J. Non-Newtonian Fluid Mech.
165
,
1602
1612
(
2010
).
10.
Dean
,
D.
,
L.
Rebenfeld
,
R.
Register
, and
B.
Hisao
, “
Matrix molecular orientation in fiber-reinforced polypropylene composites
,”
J. Mater. Sci.
33
,
4797
4812
(
1998
).
11.
Eder
,
G.
, and
H.
Janeschitz-Kriegl
, “Structure development during processing: crystallization,” in Materials Science and Technology: A Comprehensive Treatment, Vol.
18
: “Processing of Polymers” (
Wiley-VCH
,
Weinheim
,
1997
), pp.
269
342
.
12.
Fernandez-Ballester
,
L.
,
D.
Thurman
,
W.
Zhou
, and
J.
Kornfield
, “
Effect of long chains on the threshold stresses for flow-induced crystallization in iPP: Shish kebabs vs sausages
,”
Macromolecules
45
,
6557
6570
(
2012
).
13.
Fujiyama
,
M.
, and
T.
Wakino
, “
Structure of skin layer in injection-molded polypropylene
,”
J. Appl. Polym. Sci.
35
,
29
49
(
1988
).
14.
Guenette
,
R.
, and
M.
Fortin
, “
A new mixed finite element method for computing viscoelastic flows
,”
J. Non-Newtonian Fluid Mech.
60
,
27
52
(
1995
).
15.
Hatzikiriakos
,
S.
, and
J.
Dealy
, “
Start-up pressure transients in a capillary rheometer
,”
Polym. Eng. Sci.
34
,
493
499
(
1994
).
16.
He
,
J.
, and
P.
Zoller
, “
Crystallization of polypropylene, nylon-66 and poly(ethylene terephthalate) at pressures to 200 MPa: Kinetics and characterization of products
,”
J. Polym. Sci. Part B: Polym. Phys.
32
,
1049
1087
(
1994
).
17.
Hermans
,
J. J.
,
D.
Vermaas
,
P.
Hermans
, and
A.
Weidinger
, “
Quantitative evaluation of orientation in cellulose fibres from the X-Ray fibre diagram
,”
Recl. Trav. Chim. Pays-Bas
65
,
427
447
(
1946
).
18.
Hill
,
M.
, and
A.
Keller
, “
‘Hairdressing’ shish-kebabs by melting
,”
Colloid Polym. Sci.
259
,
335
341
(
1981
).
19.
Hirt
,
C.
,
A.
Amsden
, and
J.
Cook
, “
An arbitrary Lagrangian-Eulerian computing method for all flow speeds
,”
J. Comput. Phys.
14
,
227
253
(
1974
).
20.
Housmans
,
J.
,
L.
Balzano
,
D.
Santoro
,
G.
Peters
, and
H.
Meijer
, “
A design to study flow induced crystallization in a multipass rheometer
,”
Int. Polym. Process.
24
(
2
),
185
197
(
2009a
).
21.
Housmans
,
J.
,
M.
Gahleitner
,
G.
Peters
, and
H.
Meijer
, “
Structure-property relations in moulded, nucleated isotactic polypropylene
,”
Polymer
50
(
10
),
2304
2319
(
2009b
).
22.
Housmans
,
J.
,
R.
Steenbakkers
,
P.
Roozemond
,
G.
Peters
, and
H.
Meijer
, “
Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene
,”
Macromolecules
42
,
5728
5740
(
2009c
).
23.
Hulsen
,
M.
,
R.
Fattal
, and
R.
Kupferman
, “
Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms
,”
J. Non-Newtonian Fluid Mech.
127
,
27
39
(
2005
).
24.
Hwang
,
W.
,
M.
Hulsen
, and
H.
Meijer
, “
Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames
,”
J. Non-Newtonian Fluid Mech.
121
,
15
33
(
2004
).
25.
Incropera
,
F. P.
,
D.
DeWitt
,
T.
Bergman
, and
A. S.
Lavine
,
Introduction to Heat Transfer
(
John Wiley & Sons
,
Hoboken, NJ
,
2007
).
26.
Jerschow
,
P.
, and
H.
Janeschitz-Kriegl
, “
The role of long molecules and nucleating agents in shear induced crystallization of isotactic polypropylenes
,”
Int. Polym. Process.
12
,
72
77
(
1997
).
27.
Keller
,
A.
, and
H.
Kolnaar
, “
Flow-induced orientation and structure formation
,” in
“Processing of Polymers” Materials Science and Technology: A Comprehensive Treatment
, Vol.
18
(
Wiley-VCH
,
Weinheim
,
1997
), pp.
189
268
, Chap. 4.
28.
Keller
,
A.
, and
M.
Mackley
, “
Chain orientation and crystallization
,”
Pure Appl. Chem.
39
,
195
224
(
1974
).
29.
Kornfield
,
J.
,
G.
Kumaraswamy
, and
A.
Issaian
, “
Recent advances in understanding flow effects on polymer crystallization
,”
Ind. Eng. Chem. Res.
41
,
6383
6392
(
2002
).
30.
Kumaraswamy
,
G.
,
A.
Issaian
, and
J.
Kornfield
, “
Shear-enhanced crystallization in isotactic polyproylene. 1. Correspondence between in situ rheo-optics and ex situ structure determination
,”
Macromolecules
32
,
7537
7547
(
1999
).
31.
Kumaraswamy
,
G.
,
R.
Verma
,
J.
Kornfield
,
F.
Yeh
, and
B.
Hsiao
, “
Shear-enhanced crystallization in isotactic polypropylene: In-situ synchrotron SAXS and WAXD
,”
Macromolecules
37
,
9005
9017
(
2004
).
32.
Liedauer
,
S.
,
G.
Eder
,
H.
Janeschitz-Kriegl
,
P.
Jerschow
,
W.
Geymayer
, and
E.
Ingolic
, “
On the kinetics of shear-induced crystallization in polypropylene
,”
Int. Polym. Process.
8
(
3
),
236
244
(
1993
).
33.
Ma
,
Z.
,
L.
Balzano
,
T.
van Erp
,
G.
Portale
, and
G.
Peters
, “
Short-term flow induced crystallization in isotactic polypropylene: How short is short?
,”
Macromolecules
46
,
9249
9258
(
2013
).
34.
Moigne
,
N. L.
,
M.
van den Oever
, and
T.
Budtova
, “
Dynamic and capillary shear rheology of natural fiber-reinforced composites
,”
Polym. Eng. Sci.
53
,
2582
2593
(
2013
).
35.
Pennings
,
A.
, “
Bundle-like nucleation and longitudinal growth of fibrillar polymer crystals from flowing solutions
,”
J. Polym. Sci.: Polym. Symp.
59
,
55
86
(
1977
).
36.
Pennings
,
A.
, and
A.
Kiel
, “
Fractionation of polymers by crystallization from solution, III. On the morphology of fibrillar polyethylene crystals grown in solution
,”
Kolloid Z. Polym.
205
,
160
162
(
1965
).
37.
Pogodina
,
N.
,
H.
Winter
, and
S.
Srinivas
, “
Strain effects on physical gelation of crystallizing isotactic polypropylene
,”
J. Polym Sci.: Part B: Polym. Phys.
37
,
3512
3519
(
1999
).
38.
Portale
,
G.
,
D.
Cavallo
,
G.
Alfonso
,
D.
Hermida-Merino
,
M.
van Drongelen
,
L.
Balzano
,
G.
Peters
, and
W.
Bras
, “
Polymer crystallization studies under processing-relevant conditions at the SAXS/WAXS DUBBLE beamline at the ESRF
,”
J. Appl. Crystallogr.
46
,
1681
1689
(
2013
).
39.
Roozemond
,
P.
, “
Flow-induced crystallization of polymers: Modeling morphology and kinetics
,” Ph.D. thesis,
Eindhoven University of Technology
,
Eindhoven
,
2014
.
40.
Roozemond
,
P.
, and
G.
Peters
, “
Flow-enhanced nucleation of poly(1-butene): Model application to short-term and continuous shear and extensional flow
,”
J. Rheol.
57
,
1633
1653
(
2013
).
41.
Roozemond
,
P.
,
M.
van Drongelen
,
Z.
Ma
,
A.
Spoelstra
,
D.
Hermida-Merino
, and
G.
Peters
, “
Self-regulation in flow-induced structure formation of isotactic polypropylene
,”
Macromolecular Rapid Communications
36
(4),
385
390
(
2015
).
42.
Roozemond
,
P.
,
R.
Steenbakkers
, and
G.
Peters
, “
A model for flow-enhanced nucleation based on fibrillar dormant precursors
,”
Macromol. Theory Simul.
20
(
2
),
93
109
(
2011
).
43.
Roozemond
,
P.
,
Z.
Ma
,
K.
Cui
,
L.
Li
, and
G.
Peters
, “
Multimorphological crystallization of shish-kebab structures in isotactic polypropylene: Quantitative modeling of parent, daughter crystallization kinetics
,”
Macromolecules
47
,
5152
5162
(
2014
).
44.
Schneider
,
W.
,
A.
Köppl
, and
J.
Berger
, “
Non-isothermal crystallization of polymers. System of rate equations
,”
Int. Polym. Process.
3–4
,
151
154
(
1988
).
45.
Schrauwen
,
B.
,
L.
van Breemen
,
A.
Spoelstra
,
L.
Govaert
,
G.
Peters
, and
H.
Meijer
, “
Structure, deformation, and failure of flow-oriented semicrystalline polymers
,”
Macromolecules
37
,
8618
8633
(
2004a
).
46.
Schrauwen
,
B.
,
R.
Janssen
,
L.
Govaert
, and
H.
Meijer
, “
Intrinsic deformation behavior of semicrystalline polymers
,”
Macromolecules
37
,
6069
6078
(
2004b
).
47.
Seki
,
M.
,
D.
Thurman
,
J.
Oberhauser
, and
J.
Kornfield
, “
Shear-mediated crystallization of isotactic polypropylene: The role of long chain-long chain overlap
,”
Macromolecules
35
,
2583
2594
(
2002
).
48.
Somani
,
R.
,
L.
Yang
,
L.
Zhu
, and
B.
Hsiao
, “
Flow-induced shish-kebab precursor structures in entangled polymer melts
,”
Polymer
46
,
8587
8623
(
2005
).
49.
Steenbakkers
,
R.
, and
G.
Peters
, “
Suspension-based rheological modeling of crystallizing polymer melts
,”
Rheol. Acta
47
(
5-6
),
643
665
(
2008
).
50.
Steenbakkers
,
R.
, and
G.
Peters
, “
A stretch-based model for flow-enhanced nucleation of polymer melts
,”
J. Rheol.
55
(
2
),
401
433
(
2011
).
51.
Stein
,
R.
, and
F.
Norris
, “
The x-ray diffraction, birefringence, and infrared dichroism of stretched polyethylene
,”
J. Polym. Sci.
21
,
381
396
(
1958
).
52.
Swartjes
,
F.
,
G.
Peters
, and
S.
Rastogi
, “
Stress induced crystallization in elongational flow
,”
Int. Polym. Process.
18
,
53
66
(
2003
).
53.
van der Beek
,
M.
, “
Specific volume of polymers: Influence of the thermomechanical history
,” Ph.D. thesis,
Eindhoven University of Technology
,
Eindhoven
,
2005
.
54.
van Drongelen
,
M.
,
T.
van Erp
, and
G.
Peters
, “
Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of cooling rate and pressure
,”
Polymer
53
,
4758
4769
(
2012
).
55.
van Erp
,
T.
,
L.
Balzano
,
A.
Spoelstra
,
L.
Govaert
, and
G.
Peters
, “
Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of shear and pressure
,”
Polymer (United Kingdom)
53
,
5896
5908
(
2012
).
56.
van Erp
,
T.
,
P.
Roozemond
, and
G.
Peters
, “
Flow-enhanced crystallization kinetics of iPP during cooling at elevated pressure: Characterization, validation, and development
,”
Macromol. Theory Simul.
22
,
309
318
(
2013
).
57.
van Meerveld
,
J.
,
G.
Peters
, and
M.
Huetter
, “
Towards a rheological classification of flow induced crystallization experiments of polymer melts
,”
Rheol. Acta
44
,
119
134
(
2004
).
58.
Venerus
,
D.
,
J.
Schieber
,
H.
Iddir
,
J.
Guzman
, and
A.
Broerman
, “
Relaxation of anisotropic thermal diffusivity in a polymer melt following step shear strain
,”
Phys. Rev. Lett.
82
,
366
369
(
1999
).
60.
Verbeeten
,
W.
,
G.
Peters
, and
F.
Baaijens
, “
Numerical simulations of the planar contraction flow for a polyethylene melt using the XPP model
,”
J. Non-Newtonian Fluid Mech.
117
,
73
84
(
2004
).
61.
Wilchinsky
,
Z.
, “
Measurement of orientation in polypropylene film
,”
J. Appl. Phys.
31
,
1969
1972
(
1960
).
62.
Zoller
,
P.
, “
Pressure-volume-temperature relationships of solid and molten polypropylene and poly(butene-1)
,”
J. Appl. Polym. Sci.
23
,
1057
1061
(
1979
).
63.
Zuidema
,
H.
,
G.
Peters
, and
H.
Meijer
, “
Development and validation of a recoverable strain-based model for flow-induced crystallization of polymers
,”
Macromol. Theory Simul.
10
,
447
460
(
2001
).
You do not currently have access to this content.