Individual molecule dynamics have been shown to influence significantly the bulk rheological and microstructural properties of short-chain, unentangled, linear polyethylene liquids undergoing high strain-rate flows. The objective of this work was to extend this analysis to a linear polyethylene composed of macromolecules of a much greater length and entanglement density; i.e., a liquid consisting of C400H802 molecules, with approximately ten kinks per chain at equilibrium, as calculated by the Z1 code of Kröger [Comput. Phys. Commun. 168, 209–232 (2005)]. To achieve this, we performed nonequilibrium molecular dynamics (NEMD) simulations of a model system using the well-established potential model of Siepmann et al. [Nature 365, 330–332 (1993)] for a wide range of Weissenberg numbers (Wi) under steady shear flow. A recent study by Baig et al. [Macromolecules 43, 6886–6902 (2010)] examined this same system using NEMD simulations, but focused on the bulk rheological and microstructural properties as calculated from ensemble averages of the chains comprising the macromolecular liquids. In so doing, some key features of the system dynamics were not fully elucidated, which this article aims to highlight. Specifically, it was found that this polyethylene liquid displays multiple timescales associated with not only the decorrelation of the end-to-end vector (commonly related to the Rouse time or disengagement time, depending on the entanglement density of the liquid), but also ones associated with the retraction and rotation cycles of the individual molecules. Furthermore, when accounting for these individual chain dynamics, the “longest” relaxation time of the system was higher by a factor of 1.7, independent of shear rate, when calculated self-consistently due to the coupling of relaxation modes. Brownian dynamics (BD) simulations were also performed on an analogous free-draining bead-rod chain model to compare the rotation and retraction dynamics of a single chain in dilute solution with individual molecular motions in the melt. These BD simulations revealed that the dynamics of the free-draining chain are qualitatively and quantitatively similar to those of the individual chains comprising the polyethylene melt at strain rates in excess of Wi ≈ 50, implying a possible breakdown of reptation theory in the high shear limit. An examination of the bulk-average properties revealed the effects of the chain rotation and retraction cycles upon commonly modeled microstructural properties, such as the distribution function of the chain end-to-end vector and the entanglement number density.

1.
Aust
,
C.
,
M.
Kröger
, and
S.
Hess
, “
Structure and dynamics of dilute polymer solutions under shear flow via nonequilibrium molecular dynamics
,”
Macromolecules
32
,
5660
5672
(
1999
).
2.
Aust
,
C.
,
S.
Hess
, and
M.
Kröger
, “
Rotation and deformation of a finitely extendable flexible polymer molecule in a steady shear flow
,”
Macromolecules
35
,
8621
8630
(
2002
).
6.
Baig
,
C.
, and
V. G.
Mavrantzas
, “
Multiscale simulation of polymer melt viscoelasticity: Expanded-ensemble Monte Carlo coupled with atomistic nonequilibrium molecular dynamics
,”
Phys. Rev. B
79
,
144302
(
2009
).
3.
Baig
,
C.
,
B. J.
Edwards
, and
D. J.
Keffer
, “
A molecular dynamics study of the stress-optical behavior of a linear short-chain polyethylene melt under shear
,”
Rheol. Acta
46
,
1171
1186
(
2007
).
4.
Baig
,
C.
,
B. J.
Edwards
,
D. J.
Keffer
, and
H. D.
Cochran
, “
A proper approach for nonequilibrium molecular dynamics simulations of planar elongational flow
,”
J. Chem. Phys.
122
,
114103
(
2005
).
5.
Baig
,
C.
,
B. J.
Edwards
,
D. J.
Keffer
,
H. D.
Cochran
, and
V. A.
Harmandaris
, “
Rheological and structural studies of liquid polyethylenes under planar elongational flow using nonequilibrium molecular dynamics simulations
,”
J. Chem. Phys.
124
,
084902
(
2006
).
7.
Baig
,
C.
,
V. G.
Mavrantzas
, and
M.
Kröger
, “
Flow effects on melt structure and entanglement network of linear polymers: Results from a nonequilibrium molecular dynamics simulation study of a polyethylene melt in steady shear
,”
Macromolecules
43
,
6886
6902
(
2010
).
8.
Bird
,
R. B.
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1987a
), Vol.
II
.
9.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1987b
), Vol.
I
.
10.
Dambal
,
A.
,
A.
Kushwaha
, and
E. S. G.
Shaqfeh
, “
Slip-link simulations of entangled, finitely extensible, wormlike chains in shear flow
,”
Macromolecules
42
,
7168
7183
(
2009
).
11.
de Gennes
,
P. G.
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
,
572
579
(
1971
).
12.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
13.
Doyle
,
P. S.
,
E. S. G.
Shaqfeh
, and
A. P.
Gast
, “
Dynamic simulation of freely draining flexible polymers in steady linear flows
,”
J. Fluid Mech.
334
,
251
291
(
1997
).
14.
Edberg
,
R.
,
G. P.
Morriss
, and
D. J.
Evans
, “
Rheology of n-alkanes by nonequilibrium molecular dynamics
,”
J. Chem. Phys.
86
,
4555
4570
(
1987
).
15.
Edwards
,
B. J.
,
C.
Baig
, and
D. J.
Keffer
, “
An examination of the validity of nonequilibrium molecular-dynamics simulation algorithms for arbitrary steady-state flows
,”
J. Chem. Phys.
123
,
114106
(
2005
).
16.
Edwards
,
B. J.
,
C.
Baig
, and
D. J.
Keffer
, “
A validation of the p-SLLOD equations of motion for homogeneous steady-state flows
,”
J. Chem. Phys.
124
,
194104
(
2006
).
17.
Edwards
,
B. J.
, and
M.
Dressler
, “
A reversible problem in non-equilibrium thermodynamics: Hamiltonian evolution equations for non-equilibrium molecular dynamics simulations
,”
J. Non-Newtonian Fluid Mech.
96
,
163
175
(
2001
).
18.
Evans
,
D. J.
, and
G. P.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
(
Academic
,
London
,
1990
).
19.
Everaers
,
R.
, “
Topological versus rheological entanglement length in primitive-path analysis protocols, tube models, and slip-link models
,”
Phys. Rev. E
86
,
022801
(
2012
).
20.
Fetters
,
L. J.
,
D. J.
Lohse
, and
R. H.
Colby
, “
Chain dimensions and entanglement spacings
,” in
Physical Properties of Polymers Handbook
,
2nd ed.
, edited by
J. E.
Mark
(
Springer
,
New York
,
2007
), chap. 25.
21.
Fetters
,
L. J.
,
D. J.
Lohse
,
S. T.
Milner
, and
W. W.
Graessley
, “
Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights
,”
Macromolecules
32
,
6847
6851
(
1999
).
22.
Harasim
,
M.
,
B.
Wunderlich
,
O.
Peleg
,
M.
Kröger
, and
A. R.
Bausch
, “
Direct observation of the dynamics of semiflexible polymers in shear flow
,”
Phys. Rev. Lett.
110
,
108302
(
2013
).
23.
Hoover
,
W. G.
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
24.
Islam
,
M. T.
,
J.
Sanchez-Reyes
, and
L. A.
Archer
, “
Step and steady shear responses of nearly monodisperse highly entangled 1,4-polybutadiene solutions
,”
Rheol. Acta
42
,
191
198
(
2003
).
25.
Karayiannis
,
N. Ch.
, and
M.
Kröger
, “
Combined molecular algorithms for the generation, equilibration and topological analysis of entangled polymers: methodology and performance
,”
Int. J. Mol. Sci.
10
,
5054
5089
(
2009
).
26.
Kim
,
J. M.
,
B. J.
Edwards
, and
D. J.
Keffer
, “
Visualization of conformational changes of linear short-chain polyethylenes under shear and elongational flows
,”
J. Mol. Graphics Modell.
26
,
1046
1056
(
2008a
).
27.
Kim
,
J. M.
,
B. J.
Edwards
,
D. J.
Keffer
, and
B.
Khomami
, “
Single-chain dynamics of linear polyethylene liquids under shear flow
,”
Phys. Lett. A
373
,
769
772
(
2009
).
28.
Kim
,
J. M.
,
B. J.
Edwards
,
D. J.
Keffer
, and
B.
Khomami
, “
Dynamics of individual molecules of linear polyethylene liquids under shear: Atomistic simulation and comparison with a free-draining bead-rod chain
,”
J. Rheol.
54
,
283
310
(
2010
).
29.
Kim
,
J. M.
,
D. J.
Keffer
,
M.
Kröger
, and
B. J.
Edwards
, “
Rheological and entanglement characteristics of linear chain polyethylene liquids in planar Couette and planar elongational flows
,”
J. Non-Newtonian Fluid Mech.
152
,
168
183
(
2008b
).
30.
Kim
,
J. M.
,
P. S.
Stephanou
,
B. J.
Edwards
, and
B.
Khomami
, “
A Mean-field anisotropic diffusion model for unentangled polymeric liquids and semi-dilute solutions: model development and comparison with experimental and simulation data
,”
J. Non-Newtonian Fluid Mech.
166
,
593
606
(
2011
).
31.
Kröger
,
M.
, “
Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems
,”
Comput. Phys. Commun.
168
,
209
232
(
2005
).
32.
Kröger
,
M.
, and
S. J.
Hess
, “
Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium molecular dynamics
,”
Phys. Rev. Lett.
85
,
1128
1131
(
2000
).
33.
Kröger
,
M.
,
W.
Loose
, and
S. J.
Hess
, “
Rheology and structural changes of polymer melts via nonequilibrium molecular dynamics
,”
J. Rheol.
37
,
1057
1079
(
1993
).
34.
Kushwaha
,
A.
, and
E. S. G.
Shaqfeh
, “
Slip-link simulations of entangled polymers in planar extensional flow: Disentanglement modified extensional thinning
,”
J. Rheol.
55
,
463
483
(
2011
).
35.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworths
,
Boston
,
1988
).
36.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
Oxford
,
1999
).
37.
LeDuc
,
P.
,
C.
Haber
,
G.
Bao
, and
D.
Wirtz
, “
Dynamics of individual flexible polymers in a shear flow
,”
Nature
399
,
564
566
(
1999
).
38.
Liu
,
T. W.
, “
Flexible polymer chain dynamics and rheological properties in steady flows
,”
J. Chem. Phys.
90
,
5826
5842
(
1989
).
39.
Mavrantzas
,
V. G.
, and
D. N.
Theodorou
, “
Atomistic simulation of polymer melt elasticity: calculation of the free energy of an oriented polymer melt
,”
Macromolecules
31
,
6310
6332
(
1998
).
40.
Mavrantzas
,
V. G.
, and
H. C.
Öttinger
, “
Atomistic Monte Carlo simulations of polymer melt elasticity: Their nonequilibrium thermodynamics GENERIC formulation in a generalized canonical ensemble
,”
Macromolecules
35
,
960
975
(
2002
).
41.
McLeish
,
T. C. B.
, “
Tube theory of entangled polymer dynamics
,”
Adv. Phys.
51
,
1379
1527
(
2002
).
42.
Mhetar
,
V. R.
, and
L. A.
Archer
, “
A new proposal for polymer dynamics in steady shearing flows
,”
J. Polym. Sci. B: Polym. Phys.
38
,
222
233
(
2000
).
43.
Moore
,
J. D.
,
S. T.
Cui
,
H. D.
Cochran
, and
P. T.
Cummings
, “
A molecular dynamics study of a short-chain polyethylene melt. I. Steady-state shear
,”
J. Non-Newtonian Fluid Mech.
93
,
83
99
(
2000
).
44.
Nosé
,
S.
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
45.
Öttinger
,
H. C.
,
Stochastic Processes in Polymeric Fluids
(
Springer
,
Berlin
,
1996
).
46.
Robertson
,
R. M.
, and
D. E.
Smith
, “
Direct measurement of the intermolecular forces confining a single molecule in an entangled polymer solution
,”
Phys. Rev. Lett.
99
,
126001
(
2007
).
47.
Schieber
,
J.
,
D.
Nair
, and
T.
Kitkrailard
, “
Comprehensive comparisons with nonlinear flow data of a consistently unconstrained Brownian slip-link model
,”
J. Rheol.
51
,
1111
1141
(
2007
).
48.
Schroeder
,
C. M.
,
R. E.
Teixeira
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Characteristic periodic motion of a polymer in shear flow
,”
Phys. Rev. Lett.
95
,
018301
(
2005
).
49.
Shanbhag
,
S.
, and
M.
Kröger
, “
Primitive path networks generated by annealing and geometrical methods: insights into differences
,”
Macromolecules
40
,
2897
2903
(
2007
).
50.
Siepmann
,
J. I.
,
S.
Karaboni
, and
B.
Smit
, “
Simulating the critical behavior of complex fluids
,”
Nature
365
,
330
332
(
1993
).
52.
Smith
,
D. E.
, and
S.
Chu
, “
Response of flexible polymers to a sudden elongational flow
,”
Science
281
,
1335
1340
(
1998
).
51.
Smith
,
D. E.
,
H. P.
Babcock
, and
S.
Chu
, “
Single-polymer dynamics in steady shear flow
,”
Science
283
,
1724
1727
(
1999
).
53.
Somasi
,
M.
,
B.
Khomami
,
N. J.
Woo
,
J. S.
Hur
, and
E. S. G.
Shaqfeh
, “
Brownian dynamics simulations of bead-rod and bead-spring chains: Numerical algorithms and coarse-graining issues
,”
J. Non-Newtonian Fluid Mech.
108
,
227
255
(
2002
).
54.
Stephanou
,
P. S.
,
C.
Baig
,
G.
Tsolou
,
V. G.
Mavrantzas
, and
M.
Kröger
, “
Quantifying chain reptation in entangled polymer melts: topological and dynamical mapping of atomistic simulation results onto the tube model
,”
J. Chem. Phys.
132
,
124904
(
2010
).
55.
Teixeira
,
R. E.
,
A. K.
Dambal
,
D. H.
Richter
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
The individualistic dynamics of entangled DNA in solution
,”
Macromolecules
40
,
2461
2476
(
2007
).
56.
Teixeira
,
R. E.
,
H. P.
Babcock
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Shear thinning and tumbling dynamics of a single polymer in the flow-gradient plane
,”
Macromolecules
38
,
581
592
(
2005
).
57.
Travis
,
K. P.
,
P. J.
Daivis
, and
D. J.
Evans
, “
Thermostats for molecular fluids undergoing shear flow: Application to liquid chlorine
,”
J. Chem. Phys.
103
,
10638
(
1995
).
58.
Venkataramani
,
V.
,
R.
Sureshkumar
, and
B.
Khomami
, “
Coarse-grained modeling of macromolecular solutions using a configuration-based approach
,”
J. Rheol.
52
,
1143
1177
(
2008
).
You do not currently have access to this content.