It has been observed that flow curves (viscosity vs shear rate) of spherical solid inclusions suspended in a generalized Newtonian fluid medium can be rescaled so as to collapse onto the flow curve of the fluid medium. This result is surprising given the range of values and the spatial heterogeneity of local shear rates and viscosity in such systems. We consider such scaling for the cases of shear thinning, Newtonian, and shear-thickening fluid media. Results from experiment and computational modeling are presented that examine the microscopic origins of this scaling behavior. Over a wide range of volume fractions (5–50%), it is shown that the distribution of local shear rates can be collapsed onto a single universal curve. The parameters for rescaling the shear rate distributions can be analytically related to the macroscopic rescaling parameters for the viscosity. As a result of this rescaling capability, one may measure the properties of the fluid medium and predict the macroscopic behavior of the suspension.

1.
Allen
,
M.
, and
D.
Tildesley
,
Computer Simulations of Liquids
(
Clarendon
,
Oxford
,
1987
).
2.
Barnes
,
H.
, “
A review of the rheology of filled viscoelastic systems
,”
British Soc. Rheol.
22
,
1
36
(
2003
).
3.
Batchelor
,
G.
,
An Introduction to Fluid Dynamics
(
Cambridge University
, Cambridge,
1967
).
4.
Boek
,
E.
,
P.
Coveney
,
H.
Lekkerkerker
, and
P.
van der Schoot
, “
Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics simulations
,”
Phys. Rev. E
55
,
3124
3133
(
1997
).
5.
Cheng
,
Z.
,
J.
Zhu
,
P.
Chaikin
,
S.-E.
Phan
, and
W.
Russel
, “
Nature of the divergence in low shear viscosity of colloidal hard-sphere dispersions
,”
Phys. Rev. E
65
,
041405
(
2002
).
6.
Cohen
,
M.
, and
D.
Turnbull
, “
Molecular transport in liquids and glasses
,”
J. Chem. Phys.
31
,
1164
1169
(
1959
).
7.
Dai
,
S.
,
F.
Qi
, and
R.
Tanner
, “
Viscometric functions of concentrated non-colloidal suspensions of spheres in a viscoelastic matrix
,”
J. Rheol.
58
,
183
198
(
2014
).
8.
Español
,
P.
, and
M.
Revenga
, “
Smoothed dissipative particle dynamics
,”
Phys. Rev. E
67
,
026705
(
2003
).
9.
Gleissle
,
W.
, and
P.
Hochstein
, “
Validity of the Cox-Merz rule for concentrated suspensions
,”
J. Rheol.
47
,
897
910
(
2003
).
10.
Götze
,
W.
,
Liquids, Freezing, the Glass Transition
, edited by
J.
Hansen
,
D.
Levesque
, and
J.
Zinn-Justin
(
North Holland
, Amsterdam,
1991
), Vol.
289
503
.
11.
Highgate
,
D.
, and
R.
Whorlow
, “
Rheological properties of suspensions of spheres in non-Newtonian media
,”
Rheol. Acta
9
,
569
576
(
1970
).
12.
Hoogerbrugge
,
P.
, and
J.
Koelman
, “
Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics
,”
Europhys. Lett.
19
,
155
160
(
1992
).
13.
Jarzebski
,
G.
, “
On the effective viscosity of pseudoplastic suspensions
,”
Rheol. Acta
20
,
280
287
(
1981
).
14.
Kataoka
,
T.
,
T.
Kitano
,
M.
Sasahara
, and
K.
Nishijima
, “
Viscosity of particle filled polymer melts
,”
Rheol. Acta
17
,
149
155
(
1978
).
15.
Kim
,
S.
, and
S.
Karrila
,
Microhydrodynamics
(
Butterwort-Heinemann
, Boston,
1991
).
16.
Krieger
,
I.
, and
T.
Dougherty
, “
A mechanism for non-Newtonian flow in suspensions of rigid spheres
,”
Trans. Soc. Rheol.
3
,
137
152
(
1959
).
17.
Landau
,
L.
, and
E.
Lifshitz
,
Fluid Mechanic
(
Pregamon
,
Oxford
,
1987
).
18.
Lin
,
Y.
,
N.
Phan-Thien
, and
B.
Khoo
, “
Normal stress differences behavior of polymeric particle suspensions in shear flow
,”
J. Rheol.
58
,
223
235
(
2014
).
19.
Liu
,
A.
, and
S.
Nagel
,
Jamming and Rheology, Constrained Dynamics on Microscopic and Macroscopic Scales
(
Taylor and Francis
, London and New York,
2001
).
20.
Mall-Gleissle
,
S.
,
W.
Gleissle
,
G.
McKinley
, and
H.
Buggisch
, “
The normal stress behaviour of suspensions with viscoelastic matrix fluids
,”
Rheol. Acta
41
,
61
76
(
2002
).
21.
Martys
,
N.
, “
Study of a dissipative particle dynamics based approach for modeling suspensions
,”
J. Rheol.
49
,
401
424
(
2005
).
22.
Martys
,
N.
, and
R.
Mountain
, “
Velocity verlet algorithm for dissipative-particle-dynamics-based models of suspension
,”
Phys. Rev. E
59
,
3733
3736
(
1999
).
23.
Martys
,
N.
,
W.
George
,
B.
Chun
, and
D.
Lootens
, “
A smoothed particle hydrodynamics-based fluid model with a spatially dependent viscosity: Application to flow of a suspension with a non-Newtonian fluid matrix
,”
Rheol. Acta
49
,
1059
1069
(
2010
).
24.
Monaghan
,
J.
, “
Smoothed particle hydrodynamics
,”
Rep. Prog. Phys.
68
,
1703
1759
(
2005
).
25.
Roscoe
,
R.
, “
The viscosity of suspensions of rigid spheres
,”
British J. Appl. Phys.
3
,
267
269
(
1952
).
26.
Sierou
,
A.
, and
J.
Brady
, “
Rheology and microstructure in concentrated noncolloidal suspensions
,”
J. Rheol.
46
,
1031
1056
(
2002
).
27.
Sundstrom
,
D.
, “
Viscosity of suspensions in polymeric solutions
,”
Rheol. Acta
22
,
420
423
(
1983
).
28.
Tanner
,
R.
,
F.
Qi
, and
K.
Housiadas
, “
A differential approach to suspensions with power-law matrices
,”
J. Non-Newtonian Fluid Mech.
165
,
1677
1681
(
2010
).
29.
Tanner
,
R.
,
F.
Qi
, and
S.
Dai
, “
Scaling the normal stresses in concentrated non-colloidal suspensions of spheres
,”
Rheol. Acta
52
,
291
295
(
2013a
).
30.
Tanner
,
R.
,
S.
Dai
,
F.
Qi
, and
K.
Housiadas
, “
Viscometric functions of semi-dilute non-colloidal suspensions of spheres in a viscoelastic matrix
,”
J. Non-Newtonian Fluid Mech.
201
,
130
134
(
2013b
).
You do not currently have access to this content.