The influence of entanglement density on the constraint renewal time is studied experimentally in transitory nonequilibrium polymer melts. The entanglement density, as quantified by the rubber elasticity, increases as the linear polymer melt transforms into the equilibrium state. The relaxation modulus obtained from linear step-strain deformations, performed at different points during the equilibration, shows an increase in constraint renewal time as the entanglement density increases. The normalized relaxation modulus curves collapse onto a single curve by rescaling the time axis with a factor G¯(t)0.9 (where G¯(t) is the normalized instantaneous modulus). These findings suggest that, though the relaxation time increases with the increasing number of entanglements, the mechanism responsible for stress relaxation, after application of step-strain, is similar to that in a fully entangled melt.

1.
Barbero
,
D. R.
, and
U.
Steiner
, “
Nonequilibrium polymer rheology in spin-cast films
,”
Phys. Rev. Lett.
102
(
24
),
248303
(
2009
).
2.
de Gennes
,
P. G.
, “
Reptation of polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
,
572
579
(
1971
).
3.
Dealy
,
J. M.
, and
R. G.
Larson
,
Structure and Rheology of Molten Polymers
(
Carl Hanser Verlag
,
Munich
,
2006
).
4.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University, Oxford
,
U.K.
,
1986
).
5.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
, 3rd ed. (
Wiley
,
New York
,
1980
).
6.
Fetters
,
L. J.
,
D. J.
Lohse
,
D.
Richter
,
T. A.
Witten
, and
A.
Zirkel
, “
Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties
,”
Macromolecules
27
(
17
),
4639
4647
(
1994
).
7.
Fischer
,
E. W.
, “
Stufen- und spiralformiges kristallwachstum bei hochpolymeren
,”
Z. Naturf.
12a
,
753
754
(
1957
).
8.
Flory
,
P. J.
, and
D. Y.
Yoon
, “
Molecular morphology in semicrystalline polymers
,”
Nature
272
(
5650
),
226
229
(
1978
).
9.
Keller
,
A.
, “
A note on single crystals in polymers: Evidence for a folded chain configuration
,”
Philos. Mag.
2
(
21
),
1171
1175
(
1957
).
10.
Likhtman
,
A. E.
, and
T. C. B.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
(
16
),
6332
6343
(
2002
).
11.
Lippits
,
D. R.
,
S.
Rastogi
,
S.
Talebi
, and
C.
Bailly
, “
Formation of entanglements in initially disentangled polymer melts
,”
Macromolecules
39
(
26
),
8882
8885
(
2006
).
12.
Litvinov
,
V. M.
,
M. E.
Ries
,
T. W.
Baughman
,
A.
Henke
, and
P. P.
Matloka
, “
Chain entanglements in polyethylene melts. Why is it studied again?
,”
Macromolecules
46
(
2
),
541
547
(
2013
).
13.
Liu
,
C. Y.
, and
H.
Morawetz
, “
Kinetics of the unfolding of collapsed polystyrene chains above the glass transition temperature
,”
Macromolecules
21
(
2
),
515
518
(
1988
).
14.
McLeish
,
T. C. B.
, “
A theory for heterogeneous states of polymer melts produced by single chain crystal melting
,”
Soft Matter
3
,
83
87
(
2007
).
15.
Mead
,
D. W.
, “
Determination of molecular weight distributions of linear flexible polymers from linear viscoelastic material functions
,”
J. Rheol.
38
(
6
),
1797
1827
(
1994
).
16.
Milner
,
S. T.
, and
T. C. B.
McLeish
, “
Reptation and contour-length fluctuations in melts of linear polymers
,”
Phys. Rev. Lett.
81
(
3
),
725
728
(
1998
).
17.
Ngai
,
K. L.
, and
D. J.
Plazek
, “
Relation of internal rotational isomerism barriers to the flow activation energy of entangled polymer melts in the high temperature Arrhenius region
,”
J. Polym. Sci. Polym. Phys.
23
,
2159
2180
(
1985
).
18.
Pandey
,
A.
,
Y.
Champouret
, and
S.
Rastogi
, “
Heterogeneity in the distribution of entanglement density during polymerization in disentangled ultrahigh molecular weight polyethylene
,”
Macromolecules
44
(
12
),
4952
4960
(
2011
).
19.
Pattamapron
,
C.
, and
R. G.
Larson
, “
Predicting the linear viscoelastic properties of monodisperse and polydisperse linear polysterenes and polyethylenes
,”
Rheol. Acta
40
,
516
532
(
2001
).
20.
Raegen
,
A.
,
M.
Chowdhury
,
C.
Calers
,
A.
Schmatulla
,
U.
Steiner
, and
G.
Reiter
, “
Aging of thin polymer films cast from a near-theta solvent
,”
Phys. Rev. Lett.
105
(
22
),
227801
(
2010
).
21.
Rastogi
,
S.
,
D. R.
Lippits
,
G. W. M.
Peters
,
R.
Graf
,
Y.
Yao
, and
H. W.
Spiess
, “
Heterogeneity in polymer melts from melting of polymer crystals
,”
Nature Mater.
4
(
8
),
635
641
(
2005
).
22.
Romano
,
D.
,
E. A.
Andablo-Reyes
,
S.
Ronca
, and
S.
Rastogi
, “
Effect of a cocatalyst modifier in the synthesis of ultrahigh molecular weight polyethylene having reduced number of entanglements
,”
J. Polym. Sci. A: Polym. Chem.
51
(
7
),
1630
1635
(
2013
).
23.
Sadler
,
D. M.
, and
A.
Keller
, “
Neutron scattering studies on the molecular trajectory in polyethylene crystallized from solution and melt
,”
Macromolecules
10
(
5
),
1128
1140
(
1977
).
24.
Talebi
,
S.
,
R.
Duchateau
,
S.
Rastogi
,
J.
Kaschta
,
G. W. M.
Peters
, and
P. J.
Lemstra
, “
Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst
,”
Macromolecules
43
(
6
),
2780
2788
(
2010
).
25.
Teng
,
C.
,
Y.
Gao
,
X.
Wang
,
W.
Jiang
,
C.
Zhang
,
R.
Wang
,
D.
Zhou
, and
G.
Xue
, “
Reentanglement kinetics of freeze-dried polymers above the glass transition temperature
,”
Macromolecules
45
(
16
),
6648
6651
(
2012
).
26.
See supplementary material at http://dx.doi.org/10.1122/1.4898160 for build-up curves, and corresponding fitting parameters from Eq. (2) for polymers having a wide range of Mw, and molar mass determination of polymers PE_2.3 and PE_5.6 assuming pure reptation.

Supplementary Material

You do not currently have access to this content.