The effects of geometrical confinement and viscosity ratio on droplet coalescence in shear flow are experimentally investigated by means of a counter rotating parallel plate device, equipped with a microscope. The ratio of droplet diameter to gap spacing is varied between 0.03 and 0.33 to study both bulk and confined conditions. Three grades of a Newtonian droplet material are combined with a Newtonian matrix, resulting in three different viscosity ratios, namely, 0.1, 1.1, and 2.6. The effects of confinement are qualitatively similar for all three viscosity ratios. For each system, confinement decreases the coalescence angle and renders coalescence possible up to higher capillary numbers and initial offsets. Moreover, for all three viscosity ratios, confinement induces a lower initial offset boundary below which the approaching droplets reverse flow direction without coalescence. However, there are quantitative differences between the systems. With increasing viscosity ratio, the critical capillary number and critical upper and lower offset boundaries decrease. Since the decrease of the upper offset boundary is more predominant, the coalescence efficiency decreases with viscosity ratio. The droplet trajectories of interacting droplets are affected by both the viscosity ratio and geometrical confinement, which clearly has implications on the coalescence behavior.

1.
Aggarwal
,
N.
, and
K.
Sarkar
, “
Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear
,”
J. Fluid Mech.
584
,
1
21
(
2007
).
2.
Allan
,
R. S.
, and
S. G.
Mason
, “
Particle motions in sheared suspensions. XIV. Coalescence of liquid drops in electric and shear fields
,”
J. Colloid Sci.
17
,
383
408
(
1962
).
3.
Bartok
,
W.
, and
S. G.
Mason
, “
Particle motions in sheard suspensions V. Rigid rods and collision doublets of spheres
,”
J. Colloid Sci.
12
,
243
262
(
1957
).
4.
Batchelor
,
G. K.
, and
J. T.
Green
, “
The hydrodynamic interaction of two small freely-moving spheres in a linear flow field
,”
J. Fluid Mech.
56
,
375
400
(
1972
).
5.
Bayareh
,
M.
, and
S.
Mortazavi
, “
Binary collision of drops in simple shear flow at finite Reynolds numbers: Geometry and viscosity ratio effects
,”
Adv. Eng. Software
42
,
604
611
(
2011
).
6.
Borrell
,
M.
,
Y.
Yoon
, and
L. G.
Leal
, “
Experimental analysis of the coalescence process via head-on collisions in a time-dependent flow
,”
Phys. Fluids
16
,
3945
3954
(
2004
).
7.
Bremond
,
N.
,
A.
Thiam
, and
J.
Bibette
, “
Decompressing Emulsion Droplets Favors Coalescence
,”
Phys. Rev. Lett.
100
,
024501-1
024501-4
(
2008
).
8.
Cardinaels
,
R.
, and
P.
Moldenaers
, “
Critical conditions and breakup of non-squashed microconfined droplets: Effects of fluid viscoelasticity
,”
Microfluid. Nanofluid.
10
,
1153
1163
(
2011
).
11.
Caserta
,
S.
, and
S.
Guido
, “
Vorticity banding in biphasic polymer blends
,”
Langmuir
28
,
16254
16262
(
2012
).
9.
Caserta
,
S.
,
M.
Simeone
, and
S.
Guido
, “
A parameter investigation of shear-induced coalescence in semidilute PIB–PDMS polymer blends: Effects of shear rate, shear stress volume fraction, and viscosity
,”
Rheol. Acta
45
,
505
512
(
2006
).
10.
Caserta
,
S.
,
M.
Simeone
, and
S.
Guido
, “
Shear banding in biphasic liquid-liquid systems
,”
Phys. Rev. Lett.
100
,
1
4
(
2008
).
12.
Cassagnau
,
P.
, and
F.
Fenouillot
, “
Rheological study of mixing in molten polymers: 1-mixing of low viscous additives
,”
Polymer
45
,
8019
8030
(
2004
).
13.
Chen
,
D.
,
R.
Cardinaels
, and
P.
Moldenaers
, “
Effect of confinement on droplet coalescence in shear flow
,”
Langmuir
25
,
12885
12893
(
2009
).
14.
Chesters
,
A. K.
, “
The modelling of coalescence processes in fluid-liquid dispersions: A review of current understanding
,”
Chem. Eng. Res. Des.
69
,
259
270
(
1991
).
15.
De Bruyn
,
P.
,
R.
Cardinaels
, and
P.
Moldenaers
, “
The effect of geometrical confinement on coalescence efficiency of droplet pairs in shear flow
,”
J. Colloid Interface Sci.
409
,
183
192
(
2013
).
16.
Guido
,
S.
, and
M.
Simeone
, “
Binary collision of drops in simple shear flow by computer-assisted video optical microscopy
,”
J. Fluid Mech.
357
,
1
20
(
1998
).
17.
Guido
,
S.
,
M.
Simeone
, and
F.
Greco
, “
Deformation of a Newtonian drop in a viscoelastic matrix under steady shear flow
,”
J. Non-Newtonian Fluid Mech.
114
,
65
82
(
2003
).
18.
Guido
,
S.
,
M.
Simeone
, and
M.
Villone
, “
Diffusion effects on the interfacial tension of immiscible polymer blends
,”
Rheol. Acta
38
,
287
296
(
1999
).
19.
Hu
,
Y. T.
,
D. J.
Pine
, and
L. G.
Leal
, “
Drop deformation, breakup, and coalescence with compatibilizer
,”
Phys. Fluids
12
,
484
489
(
2000
).
20.
Jaeger
,
P. T.
,
J. J. M.
Janssen
,
F.
Groeneweg
, and
W. G. M.
Agterof
, “
Coalescence in emulsions containing inviscid drops with high interfacial mobility
,”
Colloids Surf., A
85
,
255
264
(
1994
).
21.
Jeffery
,
G. B.
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
102
,
161
179
(
1922
).
22.
Leal
,
L. G.
, “
Flow induced coalescence of drops in a viscous fluid
,”
Phys. Fluids
16
,
1833
1851
(
2004
).
23.
Loewenberg
,
M.
, and
E. J.
Hinch
, “
Collision of two deformable drops in shear flow
,”
J. Fluid Mech.
338
,
299
315
(
1997
).
24.
Lyu
,
S.-P.
,
F. S.
Bates
, and
C. W.
Macosko
, “
Coalescence in polymer blends during shearing
,”
AIChE J.
46
,
229
238
(
2000
).
25.
Migler
,
K. B.
, “
String formation in sheared polymer blends: Coalescence, breakup, and finite size effects
,”
Phys. Rev. Lett.
86
,
1023
1026
(
2001
).
26.
Minale
,
M.
,
P.
Moldenaers
, and
J.
Mewis
, “
Effect of shear history on the morphology of immiscible polymer blends
,”
Macromolecules
30
,
5470
5475
(
1997
).
27.
Mousa
,
H.
,
W.
Agterof
, and
J.
Mellema
, “
Determination of the orthokinetic coalescence efficiency of droplets in simple shear flow using mobile, partially mobile and immobile drainge models and trajectory analysis
,”
Chem. Eng. Res. Des.
80
,
345
354
(
2002
).
28.
Park
,
C. C.
,
F.
Baldessari
, and
L. G.
Leal
, “
Study of molecular weight effects on coalescence: Interface slip layer
,”
J. Rheol.
47
,
911
942
(
2003
).
29.
Pathak
,
J. A.
,
M. C.
Davis
,
S. D.
Hudson
, and
K. B.
Migler
, “
Layered droplet microstructures in sheared emulsions: Finite-size effects
,”
J. Colloid Interface Sci.
255
,
391
402
(
2002
).
30.
Sarkar
,
K.
, and
R. K.
Singh
, “
Spatial ordering due to hydrodynamic interactions between a pair of colliding drops in a confined shear
,”
Phys. Fluids
25
,
051702
(
2013
).
31.
Shardt
,
O.
,
J. J.
Derksen
, and
S. K.
Mitra
, “
Simulations of droplet coalescence in simple shear flow
,”
Langmuir
29
,
6201
12
(
2013
).
32.
Singh
,
R. K.
, and
K.
Sarkar
, “
Effects of viscosity ratio and three dimensional positioning on hydrodynamic interactions between two viscous drops in a shear flow at finite inertia
,”
Phys. Fluids
21
,
103303
(
2009
).
33.
Son
,
Y.
, “
Development of a novel microcompounder for polymer blends and nanocomposite
,”
J. Appl. Polym. Sci.
112
,
609
619
(
2009
).
34.
Taylor
,
G. I.
, “
The viscosity of a fluid containing small drops of another fluid
,”
Proc. R. Soc. London A
138
,
41
48
(
1932
).
35.
Tretheway
,
D. C.
,
M.
Muraoka
, and
L. G.
Leal
, “
Experimental trajectories of two drops in planar extensional flow
,”
Phys. Fluids
11
,
971
981
(
1999
).
36.
Vananroye
,
A.
,
P.
Van Puyvelde
, and
P.
Moldenaers
, “
Effect of confinement on droplet breakup in sheared emulsions
,”
Langmuir
22
,
3972
3974
(
2006
).
37.
Verhulst
,
K.
,
P.
Moldenaers
, and
M.
Minale
, “
Drop shape dynamics of a Newtonian drop in a non-Newtonian matrix during transient and steady shear flow
,”
J. Rheol.
51
,
261
273
(
2007
).
38.
Yang
,
H.
,
C. C.
Park
,
Y. T.
Hu
, and
L. G.
Leal
, “
The coalescence of two equal-sized drops in a two-dimensional linear flow
,”
Phys. Fluids
13
,
1087
1106
(
2001
).
39.
Yoon
,
Y.
,
F.
Baldessari
,
H. D.
Ceniceros
, and
L. G.
Leal
, “
Coalescence of two equal-sized deformable drops in an axisymmetric flow
,”
Phys. Fluids
19
,
102102
(
2007
).
40.
Yoon
,
Y.
,
M.
Borrell
,
C. C.
Park
, and
L. G.
Leal
, “
Viscosity ratio effects on the coalescence of two equal-sized drops in a two-dimensional linear flow
,”
J. Fluid Mech.
525
,
355
379
(
2005
).
41.
Zinchenko
,
A. Z.
, “
Calculation of hydrodynamic interaction between drops at low reynolds numbers
,”
J. Appl. Math. Mech.
42
,
1046
1051
(
1978
).
42.
Zurita-Gotor
,
M.
,
J.
Bławzdziewicz
, and
E.
Wajnryb
, “
Swapping trajectories: A new wall-induced cross-streamline particle migration mechanism in a dilute suspension of spheres
,”
J. Fluid Mech.
592
,
447
469
(
2007
).
You do not currently have access to this content.