We report experiments on the migration of a large bubble in an otherwise monodisperse two-dimensional (2D) foam sheared in a wide-gap Couette device. The bubble migrates away from the walls toward an equilibrium position between the center of the gap and the inner cylinder. This differs from the situation in a narrow-gap Couette device, where the equilibrium position is at the center of the gap [Mohammadigoushki and Feng, Phys. Rev. Lett. 109, 084502 (2012)]. The shift in equilibrium position is attributed to the non-Newtonian rheology of the foam, which is brought out by the nonhomogeneous shearing in a wide-gap geometry. Two aspects of the rheology, shear-thinning and the first normal stress difference, are examined separately by comparing with bubble migration in a xanthan gum solution and a Boger fluid. Shear-thinning shifts the equilibrium position inward while the normal stress does the opposite. Bubble migration in the 2D foam is the outcome of the competition between the two effects.

1.
Aytouna
,
M.
,
J.
Paredes
,
N.
Shahidzadeh-Bonn
,
S.
Moulinet
,
C.
Wagner
,
Y.
Amarouchene
,
J.
Eggers
, and
D.
Bonn
, “
Drop formation in non-Newtonian fluids
,”
Phys. Rev. Lett.
110
,
034501
(
2013
).
2.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, Vol.
1
. Fluid Mechanics (
Wiley
,
New York
,
1987
).
3.
Bonn
,
D.
, and
J.
Meunier
, “
Viscoelastic free-boundary problems: Non-Newtonian viscosity vs normal stress effects
,”
Phys. Rev. Lett.
79
,
2662
2665
(
1997
).
4.
Brenner
,
H.
,
A. L.
Graham
,
J. R.
Abbott
, and
L. A.
Mondy
, “
Theoretical basis for falling-ball rheometry in suspensions of neutrally buoyant spheres
,”
Int. J. Multiphase Flow
16
,
579
596
(
1990
).
5.
Chan
,
P. C. H.
, and
L. G.
Leal
, “
The motion of a deformable drop in a second-order fluid
,”
J. Fluid Mech.
92
,
131
170
(
1979
).
6.
Chan
,
P. C.-H.
, and
L. G.
Leal
, “
An experimental study of drop migration in shear flow between concentric cylinders
,”
Int. J. Multiphase Flow
7
,
83
99
(
1981
).
7.
Estellé
,
P.
,
C.
Lanos
, and
A.
Perrot
, “
Processing the Couette viscometry data using a Bingham approximation in shear rate calculation
,”
J. Non-Newtonian Fluid Mech.
154
,
31
38
(
2008
).
8.
Gardiner
,
B. S.
,
B. Z.
Dlugogorski
, and
G. J.
Jameson
, “
The steady shear of three-dimensional wet polydisperse foams
,”
J. Non-Newtonian Fluid Mech.
92
,
151
166
(
2000
).
9.
Gauthier
,
F.
,
H. L.
Goldsmith
, and
S. G.
Mason
, “
Particle motions in non-Newtonian media
,”
Rheol. Acta
10
,
344
364
(
1971
).
10.
Golemanov
,
K.
,
S.
Tcholakova
,
N. D.
Denkov
,
K. P.
Ananthapadmanabhan
, and
A.
Lips
, “
Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions
,”
Phys. Rev. E
78
,
051405
(
2008
).
11.
Herzhaft
,
B.
, “
Correlation between transient shear experiments and structure evolution of aqueous foams
,”
J. Colloid Interface Sci.
247
,
412
423
(
2002
).
12.
Karnis
,
A.
, and
S. G.
Mason
, “
Particle motions in sheared suspensions. XIX. Viscoelastic media
,”
Trans. Soc. Rheol.
10
,
571
592
(
1966
).
13.
Katgert
,
G.
,
B. P.
Tiche
,
M. E.
Mobius
, and
M.
van Hecke
, “
Couette flow of two-dimensional foams
,”
Europhys. Lett.
90
,
54002
(
2010
).
14.
Khan
,
S. A.
,
C. A.
Schnepper
, and
R. C.
Armstrong
, “
Foam rheology: III. Measurement of shear flow properties
,”
J. Rheol.
32
,
69
92
(
1988
).
15.
Kraynik
,
A. M.
, and
D. A.
Reinelt
, “
Microrheology of random polydisperse foam
,”
Proceedings of XIVth International Congress on Rheology
,
Seoul, Korea
,
2004
.
16.
Krieger
,
I. M.
, and
H.
Elrod
, “
Direct determination of the flow curves of nonNewtonian fluids. II. Shearing rate in the concentric cylinder viscometer
,”
J. Appl. Phys.
24
,
134
136
(
1953
).
17.
Labiausse
,
V.
,
R.
Hohler
, and
S.
Cohen-Addad
, “
Shear induced normal stress differences in aqueous foams
,”
J. Reol.
51
,
479
(
2007
).
18.
Lauridsen
,
J.
,
M.
Twardos
, and
M.
Dennin
, “
Shear-induced stress relaxation in a two-dimensional wet foam
,”
Phys. Rev. Lett.
89
,
098303
(
2002
).
19.
Mohammadigoushki
,
H.
, and
J. J.
Feng
, “
Size differentiated lateral migration in sheared two-dimensional foam
,”
Phys. Rev. Lett.
109
,
084502
(
2012
).
20.
Mohammadigoushki
,
H.
, and
J. J.
Feng
, “
Size segregation in sheared two-dimensional polydisperse foam
,”
Langmuir
29
,
1370
1378
(
2013
).
21.
Mohammadigoushki
,
H.
,
G.
Gighliotti
, and
J. J.
Feng
, “
Anomalous coalescence in sheared two-dimensional foam
,”
Phys. Rev. E
85
,
066301
(
2012
).
22.
Okuzono
,
T.
,
K.
Kawasaki
, and
T.
Nagai
, “
Rheology of random foams
,”
J. Rheol.
37
,
571
586
(
1993
).
23.
Ovarlez
,
G.
,
K.
Krishan
, and
S.
Cohen-Addad
, “
Investigation of shear banding in three-dimensional foams
,”
Europhys. Lett.
91
,
68005
(
2010
).
24.
Pratt
,
E.
, and
M.
Dennin
, “
Nonlinear stress and fluctuation dynamics of sheared disordered wet foam
,”
Phys. Rev. E
67
,
051402
(
2003
).
25.
Wang
,
Y.
,
K.
Krishan
, and
M.
Dennin
, “
Bubble kinematics in a sheared foam
,”
Phys. Rev. E
74
,
041405
(
2006
).
You do not currently have access to this content.