The nonlinear rheology of glass-forming colloidal suspensions with short-ranged attractions is discussed within the integration-through transients framework combined with the mode-coupling theory of the glass transition. Calculations are based on the square-well system, as a model for colloid-polymer mixtures. The high-density regime featuring reentrant melting of the glass upon increasing the attraction strength and the crossover from repulsive glasses formed at weak attraction to attractive glasses formed at strong attraction are discussed. Flow curves are found in qualitative agreement with experimental data, featuring a strong increase in the yield stress and for suitable interaction parameters, the crossover between two yield stresses. The yield strain, defined as the position of the stress overshoot under startup flow, is found to be proportional to the attraction range for strong attraction. At weak and intermediate attraction strength, the combined effects of hard-core caging and attraction-driven bonding result in a richer dependence on the parameters. The first normal-stress difference exhibits a weaker dependence on short-ranged attractions as the shear stress, since the latter is more sensitive than the short-wavelength features of the static structure.

2.
Amann
,
C. P.
, and
M.
Fuchs
,
J. Rheol.
(
2014
).
1.
Amann
,
C. P.
, and
M.
Fuchs
, “
Transient stress evolution in repulsion and attraction dominated glasses
,”
J. Rheol.
58
,
1191
1217
(
2014
).
3.
Asakura
,
S.
, and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
4.
Bécu
,
L.
,
S.
Manneville
, and
A.
Colin
, “
Yielding and flow in adhesive and nonadhesive concentrated emulsions
,”
Phys. Rev. Lett.
96
,
138302
(
2006
).
5.
Bergenholtz
,
J.
, and
M.
Fuchs
, “
Gel transitions in colloidal suspensions
,”
J. Phys.: Condens. Matter
11
,
10171
10182
(
1999a
).
6.
Bergenholtz
,
J.
, and
M.
Fuchs
, “
Nonergodicity transitions in colloidal suspensions with attractive interactions
,”
Phys. Rev. E
59
,
5706
5715
(
1999b
).
7.
Bergenholtz
,
J.
,
M.
Fuchs
, and
Th.
Voigtmann
, “
Colloidal gelation and non-ergodicity transitions
,”
J. Phys.: Condens. Matter
12
,
6575
6583
(
2000
).
8.
Besseling
,
R.
,
L.
Isa
,
P.
Ballesta
,
G.
Petekidis
,
M. E.
Cates
, and
W. C. K.
Poon
, “
Shear banding and flow-concentration coupling in colloidal glasses
,”
Phys. Rev. Lett.
105
,
268301
(
2010
).
9.
Brader
,
J. M.
, “
Nonlinear rheology of colloidal dispersions
,”
J. Phys.: Condens. Matter
22
,
363101
(
2010
).
10.
Brader
,
J. M.
,
M. E.
Cates
, and
M.
Fuchs
, “
First-principles constitutive equation for suspension rheology
,”
Phys. Rev. Lett.
101
,
138301
(
2008
).
11.
Brader
,
J. M.
,
Th.
Voigtmann
,
M.
Fuchs
,
R. G.
Larson
, and
M. E.
Cates
, “
Glass rheology: From mode-coupling theory to a dynamical yield criterion
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
15186
15191
(
2009
).
12.
Brader
,
J. M.
,
Th.
Voigtmann
,
M. E.
Cates
, and
M.
Fuchs
, “
Dense colloidal suspensions under time-dependent shear
,”
Phys. Rev. Lett.
98
,
058301
(
2007
).
13.
Dawson
,
K.
,
G.
Foffi
,
M.
Fuchs
,
W.
Götze
,
F.
Sciortino
,
M.
Sperl
,
P.
Tartaglia
,
Th.
Voigtmann
, and
E.
Zaccarelli
, “
Higher-order glass-transition singularities in colloidal systems with attractive interactions
,”
Phys. Rev. E
63
,
011401
(
2000
).
14.
Eckert
,
T.
, and
E.
Bartsch
, “
Re-entrant glass transition in a colloid-polymer mixture with depletion attractions
,”
Phys. Rev. Lett.
89
,
125701
(
2002
).
15.
Fabbian
,
L.
,
W.
Götze
,
F.
Sciortino
,
P.
Tartaglia
, and
F.
Thiery
, “
Ideal glass-glass transitions and logarithmic decay of correlations in a simple system
,”
Phys. Rev. E
59
,
1347
1350
(
1999a
).
16.
Fabbian
,
L.
,
W.
Götze
,
F.
Sciortino
,
P.
Tartaglia
, and
F.
Thiery
, “
Erratum: Ideal glass-glass transitions and logarithmic decay of correlations in a simple system
,”
Phys. Rev. E
60
,
2430
E
(
1999b
).
17.
Farage
,
T. F. F.
,
J.
Reinhardt
, and
J. M.
Brader
, “
Normal-stress coefficients and rod climbing in colloidal dispersions
,”
Phys. Rev. E
88
,
042303
(
2013
).
18.
Farris
,
R. J.
, “
Prediction of the viscosity of multimodal suspensions from unimodal viscosity sata
,”
Trans. Soc. Rheol.
12
,
281
301
(
1968
).
19.
Fuchs
,
M.
, and
M. E.
Cates
, “
Theory of nonlinear rheology and yielding of dense colloidal suspensions
,”
Phys. Rev. Lett.
89
,
248304
(
2002
).
20.
Fuchs
,
M.
, and
M. E.
Cates
, “
Schematic models for dynamic yielding of sheared colloidal glasses
,”
Faraday Discuss.
123
,
267
286
(
2003
).
21.
Fuchs
,
M.
, and
M. E.
Cates
, “
A mode coupling theory for Brownian particles in homogeneous steady shear flow
,”
J. Rheol.
53
,
957
1000
(
2009
).
22.
Fuchs
,
M.
,
W.
Götze
,
I.
Hofacker
, and
A.
Latz
, “
Comments on the alpha-peak shapes for relaxation in supercooled liquids
,”
J. Phys.: Condens. Matter
3
,
5047
5071
(
1991
).
23.
Funk
,
J. E.
, and
D. R.
Dinger
,
Predictive Process Control Of Crowded Particulate Suspensions: Applied To Ceramic Manufacturing
(
Springer
,
New York
,
1993
).
24.
Götze
,
W.
,
Complex Dynamics of Glass-Forming Liquids
(
Oxford University Press
,
Oxford
,
2009
).
25.
Götze
,
W.
, and
M.
Sperl
, “
Logarithmic relaxation in glass-forming systems
,”
Phys. Rev. E
66
,
011405
(
2002
).
26.
Grandjean
,
J.
, and
A.
Mourchid
, “
Re-entrant glass transition and logarithmic decay in a jammed micellar system. Rheology and dynamics investigation
,”
Europhys. Lett.
65
,
712
718
(
2004
).
27.
Henrich
,
O.
,
F.
Weysser
,
M. E.
Cates
, and
M.
Fuchs
, “
Hard discs under steady shear: Comparison of Brownian dynamics simulations and mode coupling theory
,”
Philos. Trans. R. Soc., A
367
,
5033
5050
(
2009
).
28.
Ikeda
,
A.
, and
L.
Berthier
, “
Yield stress in amorphous solids: A mode-coupling theory analysis
,”
Phys. Rev. E
88
,
052305
(
2013
).
29.
Kobelev
,
V.
, and
K. S.
Schweizer
, “
Dynamic yielding, shear thinning, and stress rheology of polymer-particle suspensions and gels
,”
J. Chem. Phys.
123
,
164903
(
2005a
).
30.
Kobelev
,
V.
, and
K. S.
Schweizer
, “
Strain softening, yielding, and shear thinning in glassy colloidal suspensions
,”
Phys. Rev. E
71
,
021401
(
2005b
).
33.
Koumakis
,
N.
, and
G.
Petekidis
, “
Two step yielding in attractive colloids: Transition from gels to attractive glasses
,”
Soft Matter
7
,
2456
2470
(
2011
).
31.
Koumakis
,
N.
,
M.
Laurati
,
S. U.
Egelhaaf
,
J. F.
Brady
, and
G.
Petekidis
, “
Yielding of hard-sphere glasses during start-up shear
,”
Phys. Rev. Lett.
108
,
098303
(
2012a
).
32.
Koumakis
,
N.
,
A.
Pamvouxoglou
,
A. S.
Poulos
, and
G.
Petekidis
, “
Direct comparison of the rheology of model hard and soft particle glasses
,”
Soft Matter
8
,
4271
4284
(
2012b
).
34.
Kroy
,
K.
,
M. E.
Cates
, and
W. C. K.
Poon
, “
Cluster mode-coupling approach to weak gelation in attractive colloids
,”
Phys. Rev. Lett.
92
,
148302
(
2004
).
35.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University, Oxford
,
UK
,
1998
).
36.
Laurati
,
M.
,
G.
Petekidis
,
N.
Koumakis
,
F.
Cardinaux
,
A. B.
Schofield
,
J. M.
Brader
,
M.
Fuchs
, and
S. U.
Egelhaaf
, “
Structure, dynamics, and rheology of colloid-polymer mixtures: From liquids to gels
,”
J. Chem. Phys.
130
,
134907
(
2009
).
37.
Laurati
,
M.
,
S. U.
Egelhaaf
, and
G.
Petekidis
, “
Nonlinear rheology of colloidal gels with intermediate volume fraction
,”
J. Rheol.
55
,
673
706
(
2011
).
38.
Lewis
,
J. A.
, “
Colloidal processing of ceramics
,”
J. Am. Ceram. Soc.
83
,
2341
2359
(
2000
).
39.
Lindström
,
S. B.
,
T. E.
Kodger
,
J.
Sprakel
, and
D. A.
Weitz
, “
Structures, stresses, and fluctuations in the delayed failure of colloidal gels
,”
Soft Matter
8
,
3657
(
2012
).
40.
Mayer
,
C.
,
E.
Stiakakis
,
E.
Zaccarelli
,
C. N.
Likos
,
F.
Sciortino
,
P.
Tartaglia
,
H.
Löwen
, and
D.
Vlassopoulos
, “
Rheological transitions in asymmetric colloidal star mixtures
,”
Rheol. Acta
46
,
611
619
(
2007
).
41.
Miyazaki
,
K.
, and
D. R.
Reichman
, “
Molecular hydrodynamic theory of supercooled liquids and colloidal suspensions under shear
,”
Phys. Rev. E
66
,
050501
R
(
2002
).
42.
Miyazaki
,
K.
,
D. R.
Reichman
, and
R.
Yamamoto
, “
Supercooled liquids under shear: Theory and simulation
,”
Phys. Rev. E
70
,
011501
(
2004
).
43.
Narayanan
,
T.
,
M.
Sztucki
,
G.
Belina
, and
F.
Pignon
, “
Microstructure and rheology near an attractive colloidal glass transition
,”
Phys. Rev. Lett.
96
,
258301
(
2006
).
44.
Pandey
,
R.
, and
J. C.
Conrad
, “
Effects of attraction strength on microchannel flow of colloid-polymer depletion mixtures
,”
Soft Matter
8
,
10695
10703
(
2012
).
45.
Pham
,
K. N.
,
A. M.
Puertas
,
J.
Bergenholtz
,
S. U.
Egelhaaf
,
A.
Moussaïd
,
P. N.
Pusey
,
A. B.
Schofield
,
M. E.
Cates
,
M.
Fuchs
, and
W. C. K.
Poon
, “
Multiple glassy states in a simple model system
,”
Science
296
,
104
106
(
2002
).
46.
Pham
,
K. N.
,
G.
Petekidis
,
D.
Vlassopoulos
,
S. U.
Egelhaaf
,
P. N.
Pusey
, and
W. C. K.
Poon
, “
Yielding of colloidal glasses
,”
Europhys. Lett.
75
,
624
630
(
2006
).
47.
Pham
,
K. N.
,
G.
Petekidis
,
D.
Vlassopoulos
,
S. U.
Egelhaaf
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Yielding behavior of repulsion- and attraction-dominated colloidal glasses
,”
J. Rheol.
52
,
649
676
(
2008
).
48.
Pham
,
K. N.
,
S. U.
Egelhaaf
,
P. N.
Pusey
, and
W. C. K.
Poon
, “
Glasses in hard spheres with short-range attraction
,”
Phys. Rev. E
69
,
011503
(
2004
).
49.
Prasad
,
V.
,
V.
Trappe
,
A. D.
Dinsmore
,
P. N.
Segre
,
L.
Cipelletti
, and
D. A.
Weitz
, “
Universal features of the fluid to solid transition for attractive colloidal particles
,”
Faraday Discuss.
123
,
1
12
(
2003
).
51.
Puertas
,
A. M.
,
M.
Fuchs
, and
M. E.
Cates
, “
Comparative simulation study of colloidal gels and glasses
,”
Phys. Rev. Lett.
88
,
098301
(
2002
).
52.
Puertas
,
A. M.
,
M.
Fuchs
, and
M. E.
Cates
, “
Dynamical heterogeneities close to a colloidal gel
,”
J. Chem. Phys.
121
,
2813
2822
(
2004a
).
53.
Puertas
,
A. M.
,
M.
Fuchs
, and
M. E.
Cates
, “
Simulation study of non-ergodicity transitions: Gelation in colloidal systems with short range attractions
,”
Phys. Rev. E
67
,
031406
(
2004b
).
50.
Puertas
,
A. M.
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Viscoelastic properties of attractive and repulsive colloidal glasses
,”
J. Phys.: Condens. Matter
17
,
L271
(
2005
).
54.
Rueb
,
C. J.
, and
C. F.
Zukoski
, “
Rheology of suspensions of weakly attractive particles: Approach to gelation
,”
J. Rheol.
42
,
1451
1476
(
1998
).
55.
Salençon
,
J.
,
Handbook of Continuum Mechanics
(
Springer
,
New York
,
2001
).
56.
Sciortino
,
F.
, “
Disordered materials: One liquid, two glasses
,”
Nature Mater.
1
,
145
146
(
2002
).
57.
Sciortino
,
F.
,
P.
Tartaglia
, and
E.
Zaccarelli
, “
Evidence of a higher-order singularity in dense short-ranged attractive colloids
,”
Phys. Rev. Lett.
91
,
268301
(
2003
).
58.
Servais
,
C.
,
R.
Jones
, and
I.
Roberts
, “
The influence of particle size distribution on the processing of food
,”
J. Food Eng.
51
,
201
208
(
2002
).
59.
Shah
,
S. A.
,
Y.-L.
Chen
,
K. S.
Schweizer
, and
C. F.
Zukoski
, “
Viscoelasticity and rheology of depletion flocculated gels and fluids
,”
J. Chem. Phys.
119
,
8747
8760
(
2003
).
60.
Siebenbürger
,
M.
,
M.
Ballauff
, and
Th.
Voigtmann
, “
Creep in colloidal glasses
,”
Phys. Rev. Lett.
108
,
255701
(
2012
).
61.
Sperl
,
M.
, “
Logarithmic relaxation in a colloidal system
,”
Phys. Rev. E
68
,
031405
(
2003
).
62.
Sperl
,
M.
, “
Dynamics in colloidal liquids near a crossing of glass- and gel-transition lines
,”
Phys. Rev. E
69
,
011401
(
2004
).
63.
Sztucki
,
M.
,
T.
Narayanan
,
G.
Belina
,
A.
Moussaïd
,
F.
Pignon
, and
H.
Hoekstra
, “
Kinetic arrest and glass-glass transition in short-ranged attractive colloids
,”
Phys. Rev. E
74
,
051504
(
2006
).
64.
Truzzolillo
,
D.
,
D.
Marzi
,
J.
Marakis
,
B.
Capone
,
M.
Camargo
,
A.
Munam
,
F.
Moingeon
,
M.
Gauthier
,
C. N.
Likos
, and
D.
Vlassopoulos
, “
Glassy states in asymmetric mixtures of soft and hard colloids
,”
Phys. Rev. Lett.
111
,
208301
(
2013
).
65.
Willenbacher
,
N.
,
J. S.
Vesaratchanon
,
O.
Thorwarth
, and
E.
Bartsch
, “
An alternative route to highly concentrated, freely flowing colloidal dispersions
,”
Soft Matter
7
,
5777
5788
(
2011
).
66.
Woutersen
,
A. T. J. M.
, and
C. G.
de Kruif
, “
The rheology of adhesive hard sphere dispersions
,”
J. Chem. Phys.
94
,
5739
5750
(
1991
).
67.
Zaccarelli
,
E.
and
W. C. K.
Poon
, “
Colloidal glasses and gels: The interplay of bonding and caging
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
15203
15208
(
2009
).
68.
Zausch
,
J.
,
J.
Horbach
,
M.
Laurati
,
S. U.
Egelhaaf
,
J. M.
Brader
,
Th.
Voigtmann
, and
M.
Fuchs
, “
From equilibrium to steady state: The transient dynamics of colloidal liquids under shear
,”
J. Phys.: Condens. Matter
20
,
404210
(
2008
).
You do not currently have access to this content.