Reversible shear thickening is common in concentrated dispersions of Brownian hard-spheres at high-shear rates. We confirm the existence of a well-defined colloidal shear-thickened state through experimental measurements of the shear stress and the first and second normal stress differences in the shear-thickened state as a function of the particle volume fraction for a model dispersion of near hard-spheres. The shear stress and normal stress differences are observed to grow linearly with the shear rate in the shear-thickened state and both normal stress differences are observed to be negative. Our experimental results show the shear-thickened state of colloidal dispersions can be described by three material properties—the shear viscosity and first and second normal stress difference coefficients—that are a function of the volume fraction. All three material properties are found to diverge with a power law scaling as (1ϕϕmax)2 close to maximum packing, ϕmax, which is found to be 0.54 ± 0.01. We find ηr,sts > ϒ2,sts > ϒ1,sts. These results are consistent with theoretical predictions for shear thickening by hydrocluster formation and quantitatively comparable to Stokesian Dynamics simulations. We further postulate and show that these material properties are consistent with those measured for non-Brownian suspensions.

1.
Banchio
,
A. J.
, and
J. F.
Brady
, “
Accelerated Stokesian Dynamics: Brownian motion
,”
J. Chem. Phys.
118
,
10323
10332
(
2003
).
2.
Barnes
,
H. A.
, “
Shear-thickening (dilatancy) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids
,”
J. Rheol.
33
,
329
366
(
1989
).
3.
Batchelor
,
G. K.
, “
Effect of Brownian-motion on bulk stress in a suspension of spherical-particles
,”
J. Fluid Mech.
83
,
97
117
(
1977
).
4.
Batchelor
,
G. K.
, and
J. T.
Green
, “
Determination of bulk stress in a suspension of spherical-particles to order C2
,”
J. Fluid Mech.
56
,
401
427
(
1972
).
5.
Bender
,
J.
, and
N. J.
Wagner
, “
Reversible shear thickening in monodisperse and bidisperse colloidal dispersions
,”
J. Rheol.
40
,
899
916
(
1996
).
6.
Bender
,
J. W.
, and
N. J.
Wagner
, “
Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions
,”
J. Colloid Interf Sci.
172
,
171
184
(
1995
).
7.
Bergenholtz
,
J.
,
J. F.
Brady
, and
M.
Vicic
, “
The non-Newtonian rheology of dilute colloidal suspensions
,”
J. Fluid Mech.
456
,
239
275
(
2002
).
8.
Bossis
,
G.
, and
J. F.
Brady
, “
The rheology of Brownian suspensions
,”
J. Chem. Phys.
91
,
1866
1874
(
1989
).
10.
Brady
,
J. F.
,
A. S.
Khair
, and
M.
Swaroop
, “
On the bulk viscosity of suspensions
,”
J Fluid Mech.
554
,
109
123
(
2006
).
11.
Brady
,
J. F.
, and
J. F.
Morris
, “
Microstructure of strongly sheared suspensions and its impact on rheology and diffusion
,”
J Fluid Mech.
348
,
103
139
(
1997
).
9.
Brady
,
J. F.
, and
G.
Bossis
, “
Stokesian Dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
157
(
1988
).
12.
Brown
,
E.
, and
H. M.
Jaeger
, “
The role of dilation and confining stresses in shear thickening of dense suspensions
,”
J. Rheol.
56
,
875
923
(
2012
).
13.
Chellamuthu
,
M.
,
E. M.
Arndt
, and
J. P.
Rothstein
, “
Extensional rheology of shear-thickening nanoparticle suspensions
,”
Soft Matter
5
,
2117
2124
(
2009
).
14.
Couturier
,
E.
,
F.
Boyer
,
O.
Pouliquen
, and
E.
Guazzelli
, “
Suspensions in a tilted trough: second normal stress difference
,”
J Fluid Mech.
686
,
26
39
(
2011
).
15.
Dai
,
S. C.
,
E.
Bertevas
,
F. Z.
Qi
, and
R. I.
Tanner
, “
Viscometric functions for noncolloidal sphere suspensions with Newtonian matrices
.”
J Rheol.
57
,
493
510
(
2013
).
16.
Dekruif
,
C. G.
,
E. M. F.
Vanlersel
,
A.
Vrij
, and
W. B.
Russel
, “
Hard-sphere colloidal dispersions—viscosity as a function of shear rate and volume fraction
,”
J. Chem. Phys.
83
,
4717
4725
(
1985
).
17.
Dhaene
,
P.
,
J.
Mewis
, and
G. G.
Fuller
, “
Scattering dichroism measurements of flow-induced structure of a shear thickening suspension
,”
J. Colloid Interface Sci.
156
,
350
358
(
1993
).
18.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
Oxford
,
1986
).
19.
Doraiswamy
,
D.
,
A. N.
Mujumdar
,
I.
Tsao
,
A. N.
Beris
,
S. C.
Danforth
, and
A. B.
Metzner
, “
The cox-merz rule extended—a rheological model for concentrated suspensions and other materials with a yield stress
,”
J. Rheol.
35
,
647
685
(
1991
).
20.
Dratler
,
D. I.
, and
W.
Schowalter
, “
Dynamic simulation of suspensions of non-Brownian hard spheres
,”
J. Fluid Mech.
325
,
53
77
(
1996
).
60.
Eilers
,
V. H.
, “
Die viskosität von emulsionen hochviskoser stoffe als funktion der konzentration
,”
Kolloid-Zeitschrift
97
(
3
),
313
321
(
1941
).
21.
Fall
,
A.
,
N.
Huang
,
F.
Bertrand
,
G.
Ovarlez
, and
D.
Bonn
, “
Shear thickening of cornstarch suspensions as a reentrant jamming transition
,”
Phys. Rev. Lett.
100
,
018301
(
2008
).
22.
Foss
,
D. R.
, and
J. F.
Brady
, “
Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation
,”
J. Fluid Mech.
407
,
167
200
(
2000
).
23.
Gadalamaria
,
F.
, and
A.
Acrivos
, “
Shear-induced structure in a concentrated suspension of solid spheres
,”
J. Rheol.
24
,
799
814
(
1980
).
24.
Hadjistamov
,
D.
, “
Determination of the onset of shear thinning of polydimethylsiloxane
,”
J. Appl. Polym. Sci.
108
,
2356
2364
(
2008
).
25.
Hoffman
,
R. L.
, “
Discontinuous and dilatant viscosity behavior in concentrated suspensions. 1. Observation of a flow instability
,”
Trans. Soc. Rheol.
16
,
155
173
(
1972
).
26.
Kalman
,
D. P.
, “
Microstructure and rheology of concetrated suspensions of near hard-sphere colloids
,” Ph.D. thesis,
University of Delaware
, Newark, DE,
2010
.
28.
Kalman
,
D. P.
, and
N. J.
Wagner
, “
Microstructure of shear-thickening concentrated suspensions determined by flow-USANS
,”
Rheol. Acta
48
,
897
908
(
2009
).
27.
Kalman
,
D. P.
,
R. L.
Merrill
,
N. J.
Wagner
, and
E. D.
Wetzel
, “
Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions
,”
ACS Appl. Mater. Interfaces
1
,
2602
2612
(
2009
).
29.
Krishnamurthy
,
L. N.
,
N. J.
Wagner
, and
J.
Mewis
, “
Shear thickening in polymer stabilized colloidal dispersions
,”
J. Rheol.
49
,
1347
1360
(
2005
).
30.
Laun
,
H. M.
, “
Normal stresses in extremely shear thickening polymer dispersions
,”
J. Non-Newton Fluid
54
,
87
108
(
1994
).
32.
Laun
,
H. M.
,
R.
Bung
, and
F.
Schmidt
, “
Rheology of extremely shear thickening polymer dispersions (passively viscosity switching fluids)
,”
J. Rheol.
35
,
999
1034
(
1991
).
31.
Laun
,
H. M.
,
R.
Bung
,
S.
Hess
,
W.
Loose
,
O.
Hess
,
K.
Hahn
,
E.
Hadicke
,
R.
Hingmann
,
F.
Schmidt
, and
P.
Lindner
, “
Rheological and small-angle neutron-scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane poiseuille and couette-flow
,”
J. Rheol.
36
,
743
787
(
1992
).
33.
Lee
,
M.
,
M.
Alcoutlabi
,
J. J.
Magda
,
C.
Dibble
,
M. J.
Solomon
,
X.
Shi
, and
G. B.
McKenna
, “
The effect of the shear-thickening transition of model colloidal spheres on the sign of N-1 and on the radial pressure profile in torsional shear flows
,”
J. Rheol.
50
,
293
311
(
2006
).
34.
Lee
,
Y. S.
, and
N. J.
Wagner
, “
Rheological properties and small-angle neutron scattering of a shear thickening, nanoparticle dispersion at high shear rates
,”
Ind. Eng. Chem. Res.
45
,
7015
7024
(
2006
).
35.
Lim
,
A. S.
,
S. L.
Lopatnikov
,
N. J.
Wagner
, and
J. W.
Gillespie
, “
An experimental investigation into the kinematics of a concentrated hard-sphere colloidal suspension during Hopkinson bar evaluation at high stresses
,”
J Non-Newton Fluid
165
,
1342
1350
(
2010
).
36.
Lionberger
,
R. A.
, and
W. B.
Russel
, “
Microscopic theories of the rheology of stable colloidal dispersions
,”
Adv. Chem. Phys.
111
,
399
474
(
2000
).
37.
Macosko
,
C.
,
Rheology: Principles, Measurements, and Applications
(
Wiley
,
New York
,
1994
).
38.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
The effects of particle-size on reversible shear thickening of concentrated colloidal dispersions
,”
J. Chem. Phys.
114
,
10514
10527
(
2001
).
39.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition
,”
J. Chem. Phys.
117
,
10291
10302
(
2002
).
40.
Maron
,
S. H.
, and
P. E.
Pierce
, “
Application of Ree-Eyring generalized flow theory to suspensions of spherical particles
,”
J. Colloid Sci.
11
,
80
95
(
1956
).
41.
Melrose
,
J. R.
, and
R. C.
Ball
, “
Contact networks’ in continuously shear thickening colloids
,”
J. Rheol.
48
,
961
978
(
2004
).
42.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University
,
Cambridge
,
2012
).
43.
Morris
,
J. F.
, and
F.
Boulay
, “
Curvilinear flows of noncolloidal suspensions: The role of normal stresses
,”
J. Rheol.
43
,
1213
1237
(
1999
).
44.
Newstein
,
M. C.
,
H.
Wang
,
N. P.
Balsara
,
A. A.
Lefebvre
,
Y.
Shnidman
,
H.
Watanabe
,
K.
Osaki
,
T.
Shikata
,
H.
Niwa
, and
Y.
Morishima
, “
Microstructural changes in a colloidal liquid in the shear thinning and shear thickening regimes
,”
J. Chem. Phys.
111
,
4827
4838
(
1999
).
45.
O'Brien
,
V. T.
, and
M. E.
Mackay
, “
Stress components and shear thickening of concentrated hard sphere suspensions
,”
Langmuir
16
,
7931
7938
(
2000
).
46.
Phung
,
T. N.
,
J. F.
Brady
, and
G.
Bossis
, “
Stokesian Dynamics simulation of Brownian suspensions
,”
J. Fluid Mech.
313
,
181
207
(
1996
).
47.
Raghavan
,
S. R.
and
S. A.
Khan
, “
Shear-thickening response of fumed silica suspensions under steady and oscillatory shear
,”
J. Colloid Interface Sci.
185
,
57
67
(
1997
).
48.
Russel
,
W. B.
,
N. J.
Wagner
, and
J.
Mewis
, “
Divergence in the low shear viscosity for Brownian hard-sphere dispersions: At random close packing or the glass transition?
J. Rheol.
57
,
1555
1567
(
2013
).
49.
Seto
,
R.
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
,
218301
(
2013
).
50.
Shenoy
,
S. S.
, “
Electric field effects on the rheology of shear thickening colloidal dispersions
,” Ph.D. thesis,
University of Delaware
, Newark, DE,
2003
.
51.
Siebenburger
,
M.
,
M.
Fuchs
,
H. H.
Winter
, and
M.
Ballauff
, “
Viscoelasticity and shear flow of concentrated, noncrystallizing colloidal suspensions: Comparison with mode-coupling theory
,”
J. Rheol.
53
,
707
726
(
2009
).
52.
Sierou
,
A.
, and
J. F.
Brady
, “
Rheology and microstructure in concentrated noncolloidal suspensions
,”
J. Rheol.
46
,
1031
1056
(
2002
).
53.
Singh
,
A.
, and
P. R.
Nott
, “
Experimental measurements of the normal stresses in sheared Stokesian suspensions
,”
J. Fluid Mech.
490
,
293
320
(
2003
).
54.
Turian
,
R. M.
, “
Perturbation solution of steady newtonian flow in cone and plate and parallel plate systems
,”
Ind. Eng. Chem. Fundam.
11
,
361
368
(
1972
).
55.
Vand
,
V.
, “
Viscosity of solutions and suspensions. 1. Theory
,”
J. Phys. Colloid Chem.
52
,
277
299
(
1948
).
56.
Wagner
,
N. J.
, and
B. J.
Ackerson
, “
Analysis of nonequilibrium structures of shearing colloidal suspensions
,”
J. Chem. Phys.
97
,
1473
1483
(
1992
).
57.
Wagner
,
N. J.
, and
J. F.
Brady
, “
Shear thickening in colloidal dispersions
,”
Phys. Today
62
,
27
32
(
2009
).
58.
Yoshimura
,
A.
, and
R. K.
Prud'homme
, “
Wall slip corrections for couette and parallel disk viscometers
,”
J. Rheol.
32
,
53
67
(
1988
).
59.
Zarraga
,
I. E.
,
D. A.
Hill
, and
D. T.
Leighton
, “
The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids
,”
J. Rheol.
44
,
671
671
(
2000
).
You do not currently have access to this content.