In this paper, the shear and extensional rheology of fumed silica nanoparticles dispersed in an aqueous polyethylene oxide (PEO) solution is investigated. The role of particle concentration, polymer concentration, and polymer molecular weight on both the shear and the elongational behavior of the dispersions was examined. The fumed silica dispersions were found to strongly shear thicken. Increasing particle concentration was found to increase the degree of shear thickening. The effect of polymer concentration and polymer molecular weight on shear-thickening behavior was found to be nonmonotonic. The data showed a maximum in shear thickening at an optimum polymer concentration and molecular weight. Increasing the polymer concentration and molecular weight was found to reduce the critical shear rate for the onset of shear thickening. Linear viscoelastic measurements showed a qualitatively similar trend in the elastic modulus. Extensional rheology was conducted using a capillary breakup extensional rheometer. The dispersions showed strong strain-hardening behavior with thickening magnitudes similar to that observed under shear. The trends in the magnitude of extensional hardening with particle and polymer concentration were found to be similar to shear. In some cases, extensional thickening of nearly 1000 times was observed. However, in contrast to shear, increasing the molecular weight of the PEO corresponded to a sharp increase in extensional strain-hardening likely due to the role of polymer-induced elasticity which was shown to cause extensional hardening even in the absence of nanoparticles.

1.
Anna
,
S. L.
, and
G. H.
McKinley
, “
Elasto-capillary thinning and breakup of model elastic liquids
,”
J. Rheol.
45
,
115
138
(
2001
).
2.
Barnes
,
H.
, “
Shear-thickening (dilatancy) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids
,”
J. Rheol.
33
,
329
366
(
1989
).
3.
Batchelor
,
G.
, “
The stress generated in a non-dilute suspension of elongated particles by pure straining motion
,”
J. Fluid Mech.
46
,
813
829
(
1971
).
4.
Bender
,
J.
, and
N. J.
Wagner
, “
Reversible shear thickening in monodisperse and bidisperse colloidal dispersions
,”
J. Rheol.
40
,
899
916
(
1996
).
5.
Binks
,
B. P.
, “
Particles as surfactants similarities and differences
,”
Curr. Opin. Colloid Interface Sci.
7
,
21
41
(
2002
).
6.
Binks
,
B. P.
, and
T. S.
Horozov
, “
Aqueous foams stabilized solely by silica nanoparticles
,”
Angew. Chem.
117
,
3788
3791
(
2005
).
7.
Bischoff White
,
E. E.
,
M.
Chellamuthu
, and
J. P.
Rothstein
, “
Extensional rheology of a shear-thickening cornstarch and water suspension
,”
Rheol. Acta
49
,
119
129
(
2010
).
8.
Boersma
,
W. H.
,
J.
Laven
, and
H. N.
Stein
, “
Shear thickening (dilatancy) in concentrated dispersions
,”
AIChE J.
36
,
321
332
(
1990
).
9.
Bossis
,
G.
, and
J. F.
Brady
, “
Dynamic simulation of sheared suspensions. 1. General method
,”
J. Chem. Phys.
80
,
5141
5154
(
1984
).
10.
Bossis
,
G.
, and
J. F.
Brady
, “
The rheology of Brownian suspensions
,”
J. Chem. Phys.
91
,
1866
1874
(
1989
).
11.
Cabane
,
B.
,
K.
Wong
,
P.
Lindner
, and
F.
Lafuma
, “
Shear induced gelation of colloidal dispersions
,”
J. Rheol.
41
,
531
547
(
1997
).
12.
Catherall
,
A. A.
,
J. R.
Melrose
, and
R. C.
Ball
, “
Shear thickening and order-disorder effects in concentrated colloids at high shear rates
,”
J. Rheol.
44
,
1
25
(
2000
).
13.
Chellamuthu
,
M.
,
E.
Arndt
, and
J. P.
Rothstein
, “
Extensional rheology of shear-thickening nanoparticle suspensions
,”
Soft Matter
5
,
2117
2124
(
2009
).
14.
de Gennes
,
P.-G.
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
New York
,
1979
).
15.
Entov
,
V.
, and
E.
Hinch
, “
Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid
,”
J. Non-Newtonian Fluid Mech.
72
,
31
53
(
1997
).
16.
Fagan
,
M. E.
, and
C. F.
Zukoski
, “
The rheology of charge stabilized silica suspensions
,”
J. Rheol.
41
,
373
397
(
1997
).
17.
Foss
,
D. R.
, and
J. F.
Brady
, “
Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation
,”
J. Fluid Mech.
407
,
167
200
(
2000
).
18.
Frith
,
W. J.
,
P.
d'Haene
,
R.
Buscall
, and
J.
Mewis
, “
Shear thickening in model suspensions of sterically stabilized particles
,”
J. Rheol.
40
,
531
548
(
1996
).
19.
Fukushima
,
K.
,
D.
Tabuani
,
C.
Abbate
,
M.
Arena
, and
P.
Rizzarelli
, “
Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica
,”
Eur. Polym. J.
47
,
139
152
(
2011
).
21.
Galindo-Rosales
,
F. J.
, and
F. J.
Rubio-Hernandez
, “
Static and dynamic yield stresses of Aerosil @ 200 suspension in polypropylene glycol
,”
Appl. Rheol.
20
,
22787
(
2010
).
22.
Galindo-Rosales
,
F. J.
,
F. J.
Rubio-Hernandez
, and
J. F.
Vel'azquez-Navarro
, “
Shear- thickening behavior of Aerosil @ R816 nanoparticles suspensions in polar organic liquids
,”
Rheol. Acta
48
,
699
708
(
2009
).
20.
Galindo-Rosales
,
F. J.
,
M.
Alves
, and
M.
Oliveira
, “
Microdevices for extensional rheometry of low viscosity elastic liquids: A review
,”
Microfluid. Nanofluid.
14
,
1
19
(
2013
).
23.
Helber
,
R.
,
F.
Doncker
, and
R.
Bung
, “
Vibration attenuation by passive stiffness switching mounts
,”
J. Sound Vib.
138
,
47
57
(
1990
).
24.
Hoffman
,
R. L.
, “
Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability
,”
J. Rheol.
16
,
155
173
(
1972
).
25.
Hoffman
,
R. L.
, “
Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests
,”
J. Colloid Interface Sci.
46
,
491
506
(
1974
).
26.
Kamibayashi
,
M.
,
H.
Ogura
, and
Y.
Otsubo
, “
Shear-thickening flow of nanoparticle suspensions flocculated by polymer bridging
,”
J. Colloid Interface Sci.
321
,
294
301
(
2008
).
28.
Kawaguchi
,
M.
,
T.
Yamamoto
, and
T.
Kato
, “
Rheological studies of hydrophilic and hydrophobic silica suspensions in the presence of adsorbed poly(N-isopropylacrylamide)
,”
Langmuir
12
,
6184
6187
(
1996
).
29.
Kawaguchi
,
M.
,
T.
Yamamoto
, and
T.
Kato
, “
Rheological properties of silica suspensions in aqueous solutions of block copolymers and their water-soluble components
,”
J. Colloid Interface Sci.
241
,
293
295
(
2001
).
27.
Kawaguchi
,
M.
,
Y.
Kimura
,
T.
Tanahashi
,
J.
Takeoka
,
J.-I.
Suzuki
,
T.
Kato
, and
S.
Funahashi
, “
Polymer adsorption effects on structures and rheological properties of silica suspensions
,”
Langmuir
11
,
563
567
(
1995
).
30.
Kim
,
G.
,
H.
Yoon
, and
Y.
Park
, “
Drug release from various thicknesses of layered mats consisting of electrospun polycaprolactone and polyethylene oxide micro/nanofibers
,”
Appl. Phys. A
100
,
1197
1204
(
2010
).
32.
Laun
,
H. M.
,
R.
Bung
, and
F.
Schmidt
, “
Rheology of extremely shear thickening polymer dispersions (passively viscosity switching fluids)
,”
J. Rheol.
35
,
999
1034
(
1991
).
31.
Laun
,
H. M.
,
R.
Bung
,
S.
Hess
,
W.
Loose
,
O.
Hess
,
K.
Hahn
,
E.
Hadicke
,
R.
Hingmann
,
F.
Schmidt
, and
P.
Lindner
, “
Rheological and small-angle neutron-scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette-flow
,”
J. Rheol.
36
,
743
787
(
1992
).
33.
Lee
,
Y.
,
E.
Wetzel
, and
N.
Wagner
, “
The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid
,”
J. Mater. Sci.
38
,
2825
2833
(
2003
).
34.
Lim
,
S. T.
,
C. H.
Hong
,
H. J.
Choi
,
P.-Y.
Lai
, and
C. K.
Chan
, “
Polymer turbulent drag reduction near the theta point
,”
Europhys. Lett.
80
,
58003
(
2007
).
35.
Lue
,
S. J.
,
W.-T.
Wang
,
K.
Mahesh
, and
C. C.
Yang
, “
Enhanced performance of a direct methanol alkaline fuel cell (DMAFC) using a polyvinyl alcohol/fumed silica/KOH electrolyte
,”
J. Power Sources
195
,
7991
7999
(
2010
).
36.
Ma
,
A. W. K.
,
F.
Chinesta
,
T.
Tuladhar
, and
M. R.
Mackley
, “
Filament stretching of carbon nanotube suspensions
,”
Rheol. Acta
47
,
447
457
(
2008
).
37.
Maranzano
,
R.
, and
N. J.
Wagner
, “
Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition
,”
J. Chem. Phys.
117
,
10291
10302
(
2002
).
38.
McKinley
,
G. H.
, and
A.
Tripathi
, “
How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer
,”
J. Rheol.
44
,
653
670
(
2000
).
39.
Melrose
,
J. R.
, and
R. C.
Ball
, “
Continuous shear thickening transitions in model concentrated colloids—The role of interparticle forces
,”
J. Rheol.
48
,
937
960
(
2004
).
40.
Mewis
,
J.
, and
G.
Biebaut
, “
Shear thickening in steady and superposition flows effect of particle interaction forces
,”
J. Rheol.
45
,
799
813
(
2001
).
41.
Mewis
,
J.
, and
J.
Vermant
, “
Rheology of sterically stabilized dispersions and lattices
,”
Prog. Org. Coat.
40
,
111
117
(
2000
).
42.
Nandi
,
S.
,
S.
Bose
,
S.
Mitra
, and
A. K.
Ghosh
, “
Dynamic rheology and morphology of HDPE-fumed silica composites: Effect of interface modification
,”
Polym. Eng. Sci.
53
,
644
650
(
2013
).
43.
Napper
,
D.
,
Polymeric Stabilization of Colloidal Dispersions
(
Academic
,
New York
,
1983
).
44.
Nilsson
,
M. A.
,
R.
Kulkarni
,
L.
Gerberich
,
R.
Hammond
,
R.
Singh
, and
J. P.
Rothstein
, “
The effect of fluid rheology on enhanced oil recovery using a microfluidic sandstone device
,”
J. Non-Newtonian Fluid Mech.
202
,
112
119
(
2013
).
45.
Otsubo
,
Y.
, “
Size effects on the shear-thickening behavior of suspensions flocculated by polymer bridging
,”
J. Rheol.
37
,
799
809
(
1993
).
46.
Papageorgiou
,
D.
, “
On the breakup of viscous liquid threads
,”
Phys. Fluids
7
,
1529
1544
(
1995
).
49.
Raghavan
,
S. R.
,
H. J.
Walls
, and
S. A.
Khan
, “
Rheology of silica dispersions in organic liquids: New evidence for solvation forces dictated by hydrogen bonding
,”
Langmuir
16
,
7920
7930
(
2000
).
48.
Raghavan
,
S. R.
, and
S.
Khan
, “
Shear-thickening response of fumed silica suspensions under steady and oscillatory shear
,”
J. Colloid Interface Sci.
185
,
57
67
(
1997
).
47.
Raghavan
,
S. R.
, and
S. A.
Khan
, “
Shear-induced microstructural changes in flocculated suspensions of fumed silica
,”
J. Rheol.
39
,
1311
1325
(
1995
).
50.
Rodd
,
L. E.
,
T.
Scott
,
J.
Cooper-White
, and
G.
McKinley
, “
Capillary break-up rheometry of low-viscosity elastic fluids
,”
Appl. Rheol.
15
,
12
27
(
2005
).
51.
Sankaran
,
A. K.
, and
J. P.
Rothstein
, “
Effect of viscoelasticity on liquid transfer during gravure printing
,”
J. Non-Newtonian Fluid Mech.
175–176
,
64
75
(
2012
).
52.
Shaqfeh
,
E. S. G.
, and
G. H.
Fredrickson
, “
The hydrodynamic stress in a suspension of rods
,”
Phys. Fluids A
2
,
7
24
(
1990
).
53.
Shenoy
,
S.
, and
N.
Wagner
, “
Influence of medium viscosity and adsorbed polymer on the reversible shear thickening transition in concentrated colloidal dispersions
,”
Rheol. Acta
44
,
360
371
(
2005
).
54.
Swenson
,
J.
,
M. V.
Smalley
, and
H. L. M.
Hatharasinghe
, “
Mechanism and strength of polymer bridging flocculation
,”
Phys. Rev. Lett.
81
,
5840
5843
(
1998
).
55.
van de Ven
,
T. G. M.
,
M. A.
Qasaimeh
, and
J.
Paris
, “
PEO-induced flocculation of fines: Effects of PEO dissolution conditions and shear history
,”
Colloids Surf., A
248
,
151
156
(
2004
).
56.
Voronin
,
E.
,
V.
Gun'ko
,
N.
Guzenko
,
E.
Pakhlov
,
L.
Nosach
,
R.
Leboda
,
J.
Skubiszewska-Ziba
,
M.
Malysheva
,
M.
Borysenko
, and
A.
Chuiko
, “
Interaction of poly(ethylene oxide) with fumed silica
,”
J. Colloid Interface Sci.
279
,
326
340
(
2004
).
57.
Wagner
,
N. J.
, and
J. F.
Brady
, “
Shear thickening in colloidal dispersions
,”
Physics Today
62
(
10
),
27
32
(
2009
).
58.
Wang
,
J.
,
R.
Bai
, and
D. D.
Joseph
, “
Nanoparticle-laden tubeless and open siphons
,”
J. Fluid Mech.
516
,
335
348
(
2004
).
59.
Xu
,
J.
,
S.
Chatterjee
,
K. W.
Koelling
,
Y.
Wang
, and
S. E.
Bechtel
, “
Shear and extensional rheology of carbon nanofiber suspensions
,”
Rheol. Acta
44
,
537
562
(
2005
).
You do not currently have access to this content.