This paper is concerned with the rheology and processing of solvent-free core shell “polymer opals” that consist of a soft outer shell grafted to hard colloidal polymer core particles. Strong iridescent colors can be produced by shearing the material in a certain way that causes the initially disordered spheres to rearrange into ordered crystalline structures and produce colors by diffraction and interference of multiple light scattering, similar to gemstone opals. The basic linear viscoelastic rheology of a polymer opal sample was determined as a function of temperature, and the material was found to be highly viscoelastic at all tested temperatures. A Cambridge multipass rheometer was specifically modified in order to make controlled mechanical measurements of initially disordered polymer opal tapes that were sandwiched between protective polyethylene terephthalate sheets. Axial extension, simple shear, and a novel “edge shearing” geometry were all evaluated, and multiple successive experiments of the edge shearing test were carried out at different temperatures. The optical development of colloidal ordering, measured as optical opalescence, was quantified by spectroscopy using visible backscattered light. The development of opalescence was found to be sensitive to the geometry of deformation and a number of process variables suggesting a complex interaction of parameters that caused the opalescence. In order to identify aspects of the deformation mechanism of the edge shearing experiment, a separate series of in situ optical experiments were carried out and this helped indicate the extent of simple shear generated with each edge shear deformation. The results show that strong ordering can be induced by successive edge shearing deformation. The results are relevant to polymer opal rheology, processing, and mechanisms relating to ordering within complex viscoelastic fluids.

1.
Ackerson
,
B. J.
, “
Shear induced order and shear processing of model hard sphere suspensions
,”
J. Rheol.
34
(
4
)
553
(
1990
).
2.
Ackerson
,
B. J.
, and
P. N.
Pusey
, “
Shear-induced order in suspensions of hard spheres
,”
Phys. Rev. Lett.
61
(
8
),
1033
1036
(
1988
).
3.
Alfrey
,
T.
,
E. B.
Bradford
,
J. W.
Vanderhoff
, and
G.
Oyster
, “
Optical properties of uniform particle-size latexes
,”
J. Opt. Soc. Am.
44
,
603
607
(
1954
).
4.
Catherall
,
A. A.
,
J. R.
Melrose
, and
R. C.
Ball
, “
Shear thickening and order–disorder effects in concentrated colloids at high shear rates
,”
J. Rheol.
44
(
1
),
1
25
(
2000
).
5.
Chen
,
L. B.
,
C. F.
Zukoski
,
B. J.
Ackerson
,
H. J. M.
Hanley
,
G. C.
Straty
,
J.
Barker
, and
C. J.
Glinka
, “
Structural changes and orientational order in a sheared colloidal suspension
,”
Phys. Rev. Lett.
69
(
4
),
688
703
(
1992
).
6.
Dealy
,
J. M.
, and
J.
Wang
,
Melt Rheology and Its Applications in the Plastics Industry
(
Springer
,
Munich
,
2013
).
8.
Finlayson
,
C. E.
,
C.
Goddard
,
E.
Papachristodoulou
,
D. R. E.
Snoswell
,
A.
Kontogeorgos
,
P.
Spahn
,
G. P.
Hellmann
,
O.
Hess
, and
J. J.
Baumberg
, “
Ordering in stretch tunable polymeric opal fibers
,”
Opt. Express
19
,
3144
3154
(
2011a
).
7.
Finlayson
,
C. E.
, and
J. J.
Baumberg
, “
Polymer opals as novel photonic materials
,”
Polym. Int.
62
(
10
),
1403
1407
(
2013
).
9.
Finlayson
,
C. E.
,
P.
Spahn
,
D. R. E.
Snoswell
,
G.
Yates
,
A.
Kontogeorgos
,
A. I.
Haines
,
G. P.
Hellmann
, and
J. J.
Baumberg
, “
3D bulk ordering in macroscopic solid opaline films by edge-induced rotational shearing
,”
Adv. Mater.
23
,
1540
1544
(
2011b
).
10.
Hachisu
,
S.
,
Y.
Kobayashi
, and
A. D.
Kose
, “
Phase separation in monodisperse latexes
,”
J. Colloid Interface Sci.
42
(
2
),
342
(
1973
).
11.
Haw
,
M. D.
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Direct observation of oscillatory-shear-induced order in colloidal suspensions
,”
Phys. Rev. E
57
(
6
),
6859
6864
(
1998
).
12.
Koumakis
,
N.
,
A. B.
Schofield
, and
G.
Petekidis
, “
Effects of shear induced crystallization on the rheology and ageing of hard sphere glasses
,”
Soft Matter
4
,
2008
2018
(
2008
).
13.
Kramb
,
R. C.
, and
C. F.
Zukoskia
, “
Nonlinear rheology and yielding in dense suspensions of hard anisotropic colloids
,”
J. Rheol.
55
(
5
),
1069
1084
(
2011
).
14.
Liu
,
A. J.
, and
S. R.
Nagel
, “
Granular and jammed materials
,”
Soft Matter
6
,
2869
2870
(
2010
).
15.
Liu
,
J.
,
D. A.
Weitz
, and
B. J.
Ackerson
, “
Coherent crystallography of shear-aligned crystals of hard-sphere colloids
,”
Phys. Rev. E
48
(
2
),
1106
1114
(
1993
).
16.
Mackley
,
M. R.
, and
D. G.
Hassell
, “
The multipass rheometer: A review
,”
J. Non-Newtonian Fluid Mech.
166
(
9-10
),
421
456
(
2011
).
17.
Mackley
,
M. R.
,
R. T. J.
Marshall
, and
J. B. A. F.
Smeulders
, “
The multipass rheometer
,”
J. Rheol.
39
(
6
),
1293
1309
(
1995
).
18.
McMullan
,
J. M.
, and
N. J.
Wagner
, “
Directed self-assembly of suspensions by large amplitude oscillatory shear flow
,”
J. Rheol.
53
(
3
),
575
588
(
2009
).
19.
Mewis
,
J.
,
W. J.
Frith
,
T. A.
Strivens
, and
W. B.
Russel
, “
The rheology of suspensions containing polymerically stabilized particles
,”
AIChE J.
35
(
3
),
415
422
(
1989
).
21.
Pursiainen
,
O. L. J.
,
J. J.
Baumberg
,
H.
Winkler
,
B.
Viel
,
P.
Spahn
, and
T.
Ruhl
, “
Nanoparticle-tuned structural color from polymer opals
,”
Opt. Express
15
(
15
),
9552
9561
(
2007
).
20.
Pursiainen
,
O. L. J.
,
J. J.
Baumberg
,
H.
Winkler
,
B.
Viel
, and
T.
Ruhl
, “
Compact strain-sensitive flexible photonic crystals for sensors
,”
Appl. Phys. Lett.
87
(
10
),
1902
1905
(
2005
).
22.
Ruhl
,
T.
,
P.
Spahn
, and
G. P.
Hellmann
, “
Artificial opals prepared by melt compression
,”
Polymer
44
,
7625
7634
(
2003
).
23.
Ruhl
,
T.
,
P.
Spahn
,
H.
Winkler
, and
G. P.
Hellmann
, “
Large area monodomain order in colloidal crystals
,”
Macromol. Chem. Phys.
205
,
1385
1393
(
2004
).
24.
Snoswell
,
D. R. E.
,
A.
Kontogeorgos
,
J. J.
Baumberg
,
T. D.
Lord
M. R.
Mackley
,
P.
Spahn
, and
G. P.
Hellmann
, “
Shear ordering in polymer photonic crystals
,”
Phys. Rev. E
81
,
020401
(
2010
).
25.
Spahn
,
P.
,
C. E.
Finlayson
,
W.
Mbi Etah
,
D. R. E.
Snoswell
,
J. J.
Baumberg
, and
G. P.
Hellmann
, “
Modification of the refractive-index contrast in polymer opal films
,”
J. Mater. Chem.
21
,
8893
8897
(
2011
).
26.
Sussman
,
J.
,
D. R. E.
Snoswell
,
A.
Kontogeorgos
,
J. J.
Baumberg
, and
P.
Spahn
, “
Thermochromic polymer opals
,”
Appl. Phys. Lett.
95
(
17
),
173116
(
2009
).
27.
Trappe
,
V.
,
V.
Prasad
,
L.
Cipelletti
,
P. N.
Segre
, and
D. A.
Weitz
, “
Jamming phase diagram for attractive particles
,”
Nature
411
(
14
),
772
775
(
2001
).
28.
van Blaaderen
,
A.
,
R.
Ruel
, and
P.
Wiltzius
, “
Template directed colloidal crystallisation
,”
Nature
385
,
321
324
(
1997
).
29.
Vermant
,
J.
, and
M. J.
Solomon
, “
Flow-induced structure in colloidal suspensions
,”
J. Phys.: Condens. Matter
17
,
187
216
(
2005
).
30.
Viel
,
B.
,
T.
Ruhl
, and
G. P.
Hellmann
, “
Reversible deformation of opal elastomer
,”
Chem. Mater.
19
,
5673
5679
(
2007
).
31.
White
,
J. L.
, and
K. J.
Kim
,
Thermoplastic and Rubber Compounds: Technology and Physical Chemistry
(
Hanser
,
Munich
,
2007–2008
).
You do not currently have access to this content.