We study the medium amplitude oscillatory shear (MAOS) of a semi-dilute, hard-sphere colloidal dispersion. Through solution of the Smoluchowski equation governing the statistical distribution of suspended particles in the semi-dilute limit, we calculate the linear viscoelasticity and the normal stress differences that arise from oscillatory shear as an expansion in terms of small rates of deformation. The effects of hydrodynamic versus conservative interactions are studied via the excluded-annulus model for the hard-sphere interactions. This treats the hard-sphere interactions as a steric barrier that resides beyond the hydrodynamic radius of the particles and allows for continuous variation of the strength of hydrodynamic interactions. We see remarkable distinctions between suspensions that are freely draining and those for which hydrodynamic lubrication among the particles dominate their motion. In oscillatory shear flow of a freely draining suspension at high-frequency, the normal stress differences are generated by hard-sphere stresses. In contrast, for a hydrodynamically interacting suspension at high-frequency, the first normal stress difference derives from Brownian stresses while the second normal stress difference is dominated by hydrodynamic stresses. When the first normal stress difference is plotted parametrically against the oscillatory rate of strain, the resulting Lissajous-Bowditch curves for freely draining suspensions and those with full hydrodynamic interactions take on distinct and disparate shapes. Additionally, we use an asymptotic analysis to predict that the third harmonic of the suspension stress for hard spheres is dominated by the hydrodynamic lubrication in the limit of high frequency oscillation. Our calculations demonstrate that under MAOS, hydrodynamic interactions play a central and qualitative role in the stress response of a semi-dilute colloidal dispersion.

1.
Atalik
,
K.
, and
R.
Keunings
, “
On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear
,”
J. Non-Newtonian Fluid Mech.
122
,
107
116
(
2004
).
2.
Batchelor
,
G. K.
, “
The effect of Brownian motion on the bulk stress in a suspension of spherical particles
,”
J. Fluid Mech.
83
,
97
117
(
1977
).
3.
Batchelor
,
G. K.
, and
J. T.
Green
, “
The hydrodynamic interaction of two small freely-moving spheres in a linear flow field
,”
J. Fluid Mech.
56
(
2
),
375
400
(
1972
).
4.
Bender
,
J.
, and
N. J.
Wagner
, “
Reversible shear thickening in monodisperse and bidisperse colloidal dispersions
,”
J. Rheol.
40
,
899
916
(
1996
).
5.
Bergenholtz
,
J.
,
J. F.
Brady
, and
M.
Vicic
, “
The non-Newtonian rheology of dilute colloidal suspensions
,”
J. Fluid Mech.
456
,
239
275
(
2002
).
6.
Bird
,
R.
,
R.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Volume 1, Fluid Mechanics
(
Wiley
,
New York
,
1987
).
7.
Brady
,
J. F.
, “
The rheological behavior of concentrated colloidal dispersions
,”
J. Chem. Phys.
99
(
1
),
567
581
(
1993
).
8.
Brady
,
J. F.
, and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
157
(
1988
).
9.
Brady
,
J. F.
, and
M.
Vicic
, “
Normal stresses in colloidal dispersions
,”
J. Rheol.
39
(
3
),
545
566
(
1995
).
10.
Brady
,
J. F.
, and
N. J.
Wagner
, “
Shear thickening in colloidal dispersions
,”
Phys. Today
62
(
10
),
27
32
(
2009
).
11.
Cheng
,
X.
,
J. H.
McCoy
,
J. N.
Israelachvili
, and
I.
Cohen
, “
Imaging the microscopic structure of shear thinning and thickening colloidal suspensions
,”
Science
333
(
6047
),
1276
1279
(
2011
).
12.
Cho
,
K. S.
,
K. H.
Ahn
, and
S. J.
Lee
, “
A geometrical interpretation of large amplitude oscillatory shear response
,”
J. Rheol.
49
,
747
758
(
2005
).
13.
Cox
,
W. P.
, and
E. H.
Merz
, “
Correlation of dynamic and steady flow viscosities
,”
J. Polym. Sci.
28
(
118
),
619
622
(
1958
).
14.
Dealy
,
J. M.
, and
K. F.
Wissbrun
,
Melt Rheology and Its Role in Plastics Processing: Theory and Applications
(
Van Nostrand Reinhold
,
New York
,
1990
).
15.
Doraiswamy
,
D.
,
A. N.
Mujumdar
,
I.
Tsao
,
A. N.
Beris
,
S. C.
Danforth
, and
A. B.
Metzner
, “
The Cox-Merz rule extended: A rheological model for concentrated suspensions and other materials with a yield stress
,”
J. Rheol.
35
(
4
),
647
(
1991
).
16.
Einstein
,
A. E.
, “
Über die von der molekularkinetischen theorie der tärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen
,”
Ann. Phys.
322
,
549
560
(
1905
).
17.
Ewoldt
,
R. H
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
18.
Giacomin
,
A. J.
, and
J. M.
Dealy
, “
Large-amplitude oscillatory shear
,” in
Techniques in Rheological Measurement
, edited by
A. A.
Collyer
(
Elsevier Applied Science
,
London
,
1993
), Chap. 4.
19.
Gurnon
,
A. K.
, and
N. J.
Wagner
, “
Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles
,”
J. Rheol.
56
(
2
),
333
351
(
2012
).
20.
Hyun
,
K.
,
S. H.
Kim
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear as a way to classify the complex fluids
,”
J. Non-Newtonian Fluid Mech.
107
,
51
65
(
2002
).
21.
Jeffrey
,
D. J.
, “
The calculation of the low Reynolds number resistance functions for two unequal spheres
,”
Phys. Fluids A
4
,
16
29
(
1992
).
22.
Jeffrey
,
D. J.
, and
Y.
Onishi
, “
Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow
,”
J. Fluid Mech.
139
,
261
290
(
1984
).
23.
Khair
,
A. S.
, and
J. F.
Brady
, “
Microviscoelasticity of colloidal dispersions
,”
J. Rheol.
49
,
1449
1481
(
2005
).
24.
Kim
,
S.
, and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Dover
,
Mineola
,
2005
).
25.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
,
1999
).
26.
Lee
,
Y. S.
,
E. D.
Wetzel
, and
N. J.
Wagner
, “
The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid
,”
J. Mater. Sci.
38
,
2825
2833
(
2003
).
27.
Lionberger
,
R. A.
, and
W. B.
Russel
, “
High frequency modulus of hard spheres
,”
J. Rheol.
38
,
1885
1908
(
1994
).
28.
López-Barrón
,
C. R.
,
L.
Porcar
,
A. P. R.
Eberle
, and
N. J.
Wagner
, “
Dynamics of melting and recrystallization in a polymeric micellar crystal subjected to large amplitude oscillatory shear flow
,”
Phys. Rev. Lett.
108
(
25
),
258301
(
2012
).
29.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition
,”
J. Chem. Phys.
117
,
10291
10302
(
2002
).
30.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University Press
,
Cambridge
,
2012
).
31.
Morris
,
J. F.
, and
J. F.
Brady
, “
Self diffusion in sheared suspensions
,”
J. Fluid Mech.
312
,
223
252
(
1996
).
32.
Morris
,
J. F.
, and
J. F.
Brady
, “
Microstructure of strongly sheared suspensions and its impact on rheology and diffusion
,”
J. Fluid Mech.
348
,
103
139
(
1997
).
33.
Phung
,
T. N.
,
J. F.
Brady
, and
G.
Bossis
, “
Stokesian dynamics simulation of Brownian suspensions
,”
J. Fluid Mech.
313
,
181
207
(
1996
).
34.
Pipkin
,
A. C.
,
Lectures on Viscoelasticity Theory
(
Springer-Verlag
,
New York
,
1986
).
35.
Rogers
,
S. A.
,
J.
Kohlbrecher
, and
M. P.
Lettinga
, “
The molecular origin of stress generation in worm-like micelles, using a rheo-SANS LAOS approach
,”
Soft Matter
8
,
7831
7839
(
2012
).
36.
Rogers
,
S. A.
, and
M. P.
Lettinga
, “
A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models
,”
J. Rheol.
56
,
1
25
(
2012
).
38.
Shikata
,
T.
, and
D. S.
Pearson
, “
Viscoelastic behavior of concentrated spherical suspensions
,”
J. Rheol.
38
,
601
616
(
1994
).
39.
Swan
,
J. W.
,
E. M.
Furst
, and
N. J.
Wagner
, “
A physical model for fitting the linear viscoelastic spectrum of colloidal dispersions
,”
Rheol. Acta
(submitted).
40.
van der Werff
,
J. C.
,
C. G.
de Kruif
,
C.
Blom
, and
J.
Mellema
, “
Linear viscoelastic behavior of dense hard-sphere dispersions
,”
Phys. Rev. A
39
,
795
807
(
1989
).
41.
Wagner
,
N. J.
, and
A. T. J.
Woutersen
, “
The viscosity of bimodal and polydisperse suspensions of hard spheres in the dilute limit
,”
J. Fluid Mech.
278
,
267
287
(
1994
).
42.
Wilhelm
,
W.
, “
Fourier-transform rheology
,”
Macromol. Mater. Eng.
287
,
83
105
(
2002
).
37.
See supplementary material at http://dx.doi.org/10.1122/1.4861071 for a video of the suspension microstructure as a function of time in small amplitude oscillatory shear at high frequency with full and no hydrodynamic interactions between particles.

Supplementary Material

You do not currently have access to this content.