The introduction and subsequent removal of highly elastic solutions from surfaces has recently allowed industry to effectively remove colloidal, particulate contaminants from high-grade silicon. The substrate is first coated with the polymeric cleaning solution, and then the solution is removed either by simply rinsing the surface using an impinging water jet or by siphoning the cleaning fluid from the surface. The advantage of this continuous process over conventional techniques is the noninvasive removal while generating limited nonhazardous aqueous waste. Our group investigated the use of polymeric liquids that effectively eliminate particles without damaging the delicate surfaces. To investigate this removal, we studied two different flow types (siphoning and rinsing) of various rheological fluids to understand the governing physics that allow for removal. In this publication, we show that the presence of local shear flows of a viscoelastic fluid having a large elongational viscosity can create polymer stresses that are much larger than the associated Newtonian shear stresses. The onset of this added polymer stress in the flow field correlates well to the increase in particle removal.

1.
Advances in Particle Adhesion
, edited by
D. S.
Rimai
and
L. H.
Sharpe
(
Gordon and Breach
,
Amsterdam
,
1996
).
2.
Andreev
,
V. A.
,
E. M.
Freer
,
J. M.
de Larios
,
J. M.
Prausnitz
, and
C. J.
Radke
, “
Silicon-wafer cleaning with aqueous surfactant-stabilized gas/solids suspensions
,”
JECS
158
,
H55
H62
(
2011
).
3.
Batra
,
A.
,
S.
Paria
,
C.
Manohar
, and
K. C.
Khilar
, “
Removal of surface adhered particles by surfactants and fluid motions
,”
AIChE J.
47
,
2557
2565
(
2001
).
4.
Blake
,
J. R.
, “
A note on the image system for a stokeslet in a no-slip boundary
,”
Proc. Cambridge Philos. Soc.
70
,
303
310
(
1971
).
5.
Blake
,
J. R.
, and
A. T.
Chwang
, “
Fundamental singularities of viscous flow, Part I: The image systems in the vicinity of a stationary no-slip boundary
,”
J. Eng. Math.
8
,
23
29
(
1974
).
6.
Burdick
,
G. M.
,
N. S.
Berman
, and
S. P.
Beaudoin
, “
Describing hydrodynamic particle removal from surfaces using the particle Reynolds number
,”
J. Nanoparticle Res.
3
,
455
467
(
2001
).
7.
Bush
,
J. W. M.
,
J. M.
Aristoff
, and
A. E.
Hosoi
, “
The influence of surface tension on the circular hydraulic jump
,”
J. Fluid Mech.
558
,
33
52
(
2006
).
8.
Busnaina
,
A.
,
J.
Taylor
, and
I.
Kashkoush
, “
Measurements of adhesion and removal forces of submicron particles on silicon surfaces
,”
J. Adhes. Sci. Technol.
7
,
441
455
(
1993
).
9.
Cleaver
,
J. W.
, and
B.
Yates
, “
Mechanism for detachment of colloidal particles from a flat substrate in a turbulent flow
,”
J. Colloid Interface Sci.
44
,
464
474
(
1973
).
10.
Dimitropoulos
,
C. D.
,
Y.
Dubief
,
E. S. G.
Shaqfeh
,
P.
Moin
, and
S. K.
Lele
, “
Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow
,”
Phys. Fluids
17
,
011705
(
2005
).
11.
Edmond
,
K. V.
,
A. B.
Schofield
,
M.
Marquez
,
J. P.
Rothstein
, and
A. D.
Dinsmore
, “
Stable jets of viscoelastic fluids and self-assembled cylindrical capsules by hydrodynamic focusing
,”
Langmuir
22
,
9052
9056
(
2006
).
12.
Ghannam
,
M. T.
, “
Interfacial properties of polyacrylamide solutions
,”
J. Appl. Polym. Sci.
74
,
219
277
(
1999
).
13.
Gim
,
R.
,
T.
Lesniewski
, and
S.
Middleman
, “
Fluid dynamics of liquid jets used for particle removal from surfaces
,” in
Particles on Surfaces, Detection, Adhesion and Removal
, edited by
K. L.
Mittal
(
Marcel Dekker
,
New York
,
1995
), pp.
379
394
.
14.
Hirano
,
H.
,
K.
Sato
,
T.
Osaka
,
H.
Kuniyash
, and
T.
Hattori
, “
Damage-free ultradiluted HF/nitrogen jet spray cleaning for particle removal with minimal silicon and oxide loss
,”
Electrochem. Solid-State Lett.
9
,
G62
G65
(
2006
).
16.
Hsu
,
T. T.
, “
Surface cleaning technology using non-Newtonian fluids
,” Ph.D. dissertation (
Stanford University
,
2012
).
17.
Hsu
,
T. T.
,
T. W.
Walker
,
C. W.
Frank
, and
G. G.
Fuller
, “
Role of fluid elasticity on the dynamics of rinsing flow by an impinging jet
,”
Phys. Fluids
23
,
033101
(
2011
).
15.
Huang
,
Y.
,
D.
Guo
,
X.
Lu
, and
J.
Luo
, “
Mechanisms for nano particle removal in brush scrubber cleaning
,”
Appl. Surf. Sci.
257
,
3055
3062
(
2011
).
18.
Hubbe
,
M. A.
, “
Detachment of colloidal hydrous oxide spheres from flat solids exposed to flow. 2. Mechanism of release
,”
Colloids Surf.
16
,
249
270
(
1985
).
19.
Israelachvili
,
J.
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic Press
,
New York
,
1991
).
20.
Itano
,
M.
,
F. W.
Kern
, Jr.
,
M.
Miyashita
, and
T.
Ohmi
, “
Particle removal from silicon wafer surface in wet cleaning process
,”
IEEE Trans. Semicond. Manuf.
6
,
258
267
(
1993
).
21.
Kashkoush
,
I.
,
E.
Brause
,
R.
Novak
, and
R.
Grant
,
Particulate Removal from Silicon Substrates in Megasonic-Assisted Dilute SC1 Chemistry
(
Mater. Res. Soc. Symp. Proc.
,
1997
), Vol.
477
, pp.
21
26
.
22.
Kelley
,
J. D.
, and
F. E.
Hovis
, “
A thermal detachment mechanism for particle removal from surfaces by pulsed laser irradiation
,”
Microelectron. Eng.
20
,
159
170
(
1993
).
24.
Kern
,
W. J.
, “
The evolution of silicon wafer cleaning technology
,”
Electrochem. Soc.
137
,
1887
1892
(
1990
).
23.
Kim
,
W.
,
T.-H.
Kim
,
J.
Choi
, and
H.-Y.
Kim
, “
Mechanism of particle removal by megasonic waves
,”
Appl. Phys. Lett.
94
,
081908
(
2009
).
47.
Kumar
,
G.
, and
S.
Beaudoin
, “
Undercut removal of micrometer-scale particles from surfaces
,”
J. Electrochem. Soc.
153
,
G175
G181
(
2006
).
25.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
,
1999
), Sec. 3.4.4.
26.
Lee
,
H.
, and
S.
Balachandar
, “
Drag and lift forces on a spherical particle moving on a wall in a shear flow at finite Re
,”
J. Fluid Mech.
657
,
89
125
(
2010
).
27.
Maniero
,
R.
,
E.
Climent
, and
P.
Bacchin
, “
Adhesion and detachment fluxes of micro-particles from a permeable wall under turbulent flow conditions
,”
Chem. Eng. Sci.
71
,
409
421
(
2012
).
28.
McKinley
,
G. H.
, and
T.
Sridhar
, “
Filament-stretching rheometry of complex fluids
,”
Annu. Rev. Fluid Mech.
34
,
375
415
(
2002
).
29.
Musselman
,
R. P.
, and
T. W.
Yarbrough
, “
Shear stress cleaning for surface departiculation
,”
J. Environ. Sci.
30
,
51
56
(
1987
).
31.
Orwoll
,
R. A.
, and
Y. S.
Chong
,
Polymer Data Handbook
, edited by
J. E.
Mark
(
Oxford University Press
,
New York
,
1999
), pp.
247
251
.
30.
Patankar
,
N. A.
,
P. Y.
Huang
,
T.
Ko
, and
D. D.
Joseph
, “
Lift-off of a single particle in Newtonian and viscoelastic fluids by direct numerical simulation
,”
J. Fluid Mech.
438
,
67
100
(
2001
).
32.
Qi
,
Q.
, and
G. J.
Brereton
, “
Mechanisms of removal of micron-sized particles by high-frequency ultrasonic-waves
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
42
,
619
629
(
1995
).
33.
Richter
,
D.
, “
The effect of viscoelasticity on the transitioning cylinder wake
,” Ph.D. dissertation (
Stanford University
,
2011
).
34.
Soltani
,
M.
, and
G.
Ahmadi
, “
On particle adhesion and removal mechanisms in turbulent flows
,”
J. Adhes. Sci. Technol.
8
,
763
785
(
1994
).
35.
Vissar
,
J.
, “
Particle adhesion and removal: A review
,”
Part. Sci. Technol.
13
,
169
196
(
1995
).
36.
Walker
,
T. W.
,
T. T.
Hsu
,
C. W.
Frank
, and
G. G.
Fuller
, “
Role of shear-thinning on the dynamics of rinsing flow by an impinging jet
,”
Phys. Fluids
24
,
093102
(
2012
).
37.
Wang
,
J.
, and
D. D.
Joseph
, “
Particle-laden tubeless siphon
,”
J. Fluid Mech.
480
,
119
128
(
2003a
).
38.
Wang
,
J.
, and
D. D.
Joseph
, “
Lift forces on a cylindrical particle in plane Poiseuille flow of shear thinning fluids
,”
Phys. Fluids
15
,
2267
2278
(
2003b
).
39.
Wedgewood
,
L. E.
, and
R. B.
Bird
, “
From molecular models to the solution of flow problems
,”
Ind. Eng. Chem. Res.
27
,
1313
1320
(
1988
).
40.
Xu
,
K.
,
R.
Vos
,
G.
Vereecke
,
G.
Doumen
,
W.
Fyen
,
P. W.
Mertens
,
M. M.
Heyns
,
C.
Vinckier
, and
J.
Fransaer
, “
Particle adhesion and removal mechanisms during brush scrubber cleaning
,”
J. Vac. Sci. Technol. B
22
,
2844
2852
(
2004
).
41.
Yeckel
,
A.
, and
S.
Middleman
, “
Removal of a viscous film from a rigid plane surface by an impinging liquid jet
,”
Chem. Eng. Commun.
50
,
165
175
(
1987
).
42.
Yiantsios
,
S. G.
, and
A. J.
Karabelas
, “
Detachment of spherical microparticles adhering on flat surfaces by hydrodynamic forces
,”
J. Colloid Interface Sci.
176
,
74
85
(
1995
).
43.
Zhang
,
F.
,
A. A.
Busnaina
,
M. A.
Fury
, and
S.-Q.
Wang
, “
The removal of deformed submicron particles from silicon wagers by spin rinse and megasonics
,”
J. Electron. Mater.
29
,
199
204
(
2000
).
44.
Zeng
,
L.
,
F.
Najjar
,
S.
Balachandar
, and
P.
Fischer
, “
Forces on a finite-sized particle located close to a wall in a linear shear flow
,”
Phys. Fluids
21
,
033302
(
2009
).
45.
Zoeteweij
,
M. L.
,
J. C. J.
van der Donck
, and
R.
Veersluis
, “
Removal in linear shear flow: Model prediction and experimental validation
,”
J. Adhes. Sci. Technol.
23
,
899
911
(
2009
).
46.
See supplemental material http://dx.doi.org/10.1122/1.4832637 for high speed videos of particle removal comparing glycerol-water, polyacrylamide, and siphoning flow. This document can be reached through a direct link in the online article's HTML reference section or via the homepage http://www.aip.org/pubservs/epaps.html.

Supplementary Material

You do not currently have access to this content.