We study theoretically the formation of shear bands in time-dependent flows of polymeric and wormlike micellar surfactant fluids, focussing on the protocols of step shear stress, step shear strain (or in practice a rapid strain ramp), and shear startup, which are commonly studied experimentally. For each protocol we perform a linear stability analysis to provide a fluid-universal criterion for the onset of shear banding, following our recent letter [Moorcroft and Fielding, Phys. Rev. Lett. 110, 086001 (2013)]. In each case this criterion depends only on the shape of the experimentally measured rheological response function for that protocol, independent of the constitutive properties of the material in question (Therefore our criteria in fact concern all complex fluids and not just the polymeric ones of interest here.). An important prediction is that pronounced banding can arise transiently in each of these protocols, even in fluids for which the underlying constitutive curve of stress as a function of strain-rate is monotonic and a steadily flowing state is accordingly unbanded. For each protocol we provide numerical results in the rolie-poly and Giesekus models that support our predictions. We comment on the ability of the rolie-poly model to capture the observed experimental phenomenology and on the failure of the Giesekus model.
Skip Nav Destination
Article navigation
January 2014
Research Article|
January 01 2014
Shear banding in time-dependent flows of polymers and wormlike micelles
Special Collection:
Shear Banding
R. L. Moorcroft;
R. L. Moorcroft
Department of Physics, Durham University, Science Laboratories
, South Road, Durham DH1 3LE, United Kingdom
Search for other works by this author on:
S. M. Fielding
S. M. Fielding
Department of Physics, Durham University, Science Laboratories
, South Road, Durham DH1 3LE, United Kingdom
Search for other works by this author on:
J. Rheol. 58, 103–147 (2014)
Article history
Received:
August 06 2013
Accepted:
November 24 2013
Citation
R. L. Moorcroft, S. M. Fielding; Shear banding in time-dependent flows of polymers and wormlike micelles. J. Rheol. 1 January 2014; 58 (1): 103–147. https://doi.org/10.1122/1.4842155
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
Citing articles via
Related Content
Shear banding in large amplitude oscillatory shear (LAOStrain and LAOStress) of polymers and wormlike micelles
Journal of Rheology (September 2016)
Shear-banding fluid(s) under time-dependent shear flows. Part II: A test of the Moorcroft–Fielding criteria
Journal of Rheology (November 2021)
Shear banding in Doi–Edwards fluids
Journal of Rheology (January 2017)
Stress diffusion in shear banding wormlike micelles
Journal of Rheology (November 2015)
Linear wormlike micelles behave similarly to entangled linear polymers in fast shear flows
Journal of Rheology (July 2020)