We study theoretically the formation of shear bands in time-dependent flows of polymeric and wormlike micellar surfactant fluids, focussing on the protocols of step shear stress, step shear strain (or in practice a rapid strain ramp), and shear startup, which are commonly studied experimentally. For each protocol we perform a linear stability analysis to provide a fluid-universal criterion for the onset of shear banding, following our recent letter [Moorcroft and Fielding, Phys. Rev. Lett. 110, 086001 (2013)]. In each case this criterion depends only on the shape of the experimentally measured rheological response function for that protocol, independent of the constitutive properties of the material in question (Therefore our criteria in fact concern all complex fluids and not just the polymeric ones of interest here.). An important prediction is that pronounced banding can arise transiently in each of these protocols, even in fluids for which the underlying constitutive curve of stress as a function of strain-rate is monotonic and a steadily flowing state is accordingly unbanded. For each protocol we provide numerical results in the rolie-poly and Giesekus models that support our predictions. We comment on the ability of the rolie-poly model to capture the observed experimental phenomenology and on the failure of the Giesekus model.

1.
Adams
,
J. M.
, and
P. D.
Olmsted
, “
Nonmonotonic models are not necessary to obtain shear banding phenomena in entangled polymer solutions
,”
Phys. Rev. Lett.
102
,
067801
(
2009a
).
2.
Adams
,
J. M.
, and
P. D.
Olmsted
, “
Adams and Olmsted reply
,”
Phys. Rev. Lett.
103
,
219802
(
2009b
).
3.
Adams
,
J. M.
,
S. M.
Fielding
, and
P. D.
Olmsted
, “
The interplay between boundary conditions and flow geometries in shear banding: Hysteresis, band configurations, and surface transitions
,”
J. Non-Newtonian Fluid Mech.
151
,
101
118
(
2008
).
4.
Adams
,
J. M.
,
S. M.
Fielding
, and
P. D.
Olmsted
, “
Transient shear banding in entangled polymers: A study using the rolie-poly model
,”
J. Rheol.
55
(
5
),
1007
1032
(
2011
).
5.
Agimelen
,
O. S.
, “
The physics of fracture in an unstable polymeric liquid
,” Ph.D. thesis, University of Leeds,
2012
.
6.
Agimelen
,
O. S.
, and
P. D.
Olmsted
, “
Apparent fracture in polymeric fluids under step shear
,”
Phys. Rev. Lett.
110
,
204503
(
2013
).
7.
Aradian
,
A.
, and
M. E.
Cates
, “
Instability and spatiotemporal rheochaos in a shear-thickening fluid model
,”
Europhys. Lett.
70
(
3
),
397
403
(
2005
).
8.
Archer
,
L. A.
, “
Separability criteria for entangled polymer liquids
,”
J. Rheol.
43
(
6
),
1555
1571
(
1999
).
9.
Archer
,
L. A.
,
Y.-L.
Chen
, and
R. G.
Larson
, “
Delayed slip after step strains in highly entangled polystyrene solutions
,”
J. Rheol.
39
(
3
),
519
525
(
1995
).
10.
Azaiez
,
J.
,
R.
Gunette
, and
A.
Ait-Kadi
, “
Entry flow calculations using multi-mode models
,”
J. Non-Newtonian Fluid Mech.
66
(
2–3
),
271
281
(
1996
).
11.
Berret
,
J.-F.
, and
Y.
Séréro
, “
Evidence of shear-induced fluid fracture in telechelic polymer networks
,”
Phys. Rev. Lett.
87
,
048303
(
2001
).
12.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
Use of particle-tracking velocimetry and flow birefringence to study nonlinear flow behavior of entangled wormlike micellar solution: From wall slip, bulk disentanglement to chain scission
,”
Macromolecules
41
(
4
),
1455
1464
(
2008
).
13.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
Shear banding or not in entangled DNA solutions depending on the level of entanglement
,”
J. Rheol.
53
(
1
),
73
83
(
2009a
).
14.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
Exploring origins of interfacial yielding and wall slip in entangled linear melts during shear or after shear cessation
,”
Macromolecules
42
(
6
),
2222
2228
(
2009b
).
15.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
Exploring the transition from wall slip to bulk shearing banding in well-entangled DNA solutions
,”
Soft Matter
5
,
780
789
(
2009c
).
16.
Boukany
,
P. E.
,
S.-Q.
Wang
, and
X.
Wang
, “
Step shear of entangled linear polymer melts: New experimental evidence for elastic yielding
,”
Macromolecules
42
(
16
),
6261
6269
(
2009
).
17.
Burdette
,
S. R.
, “
Development of the velocity field in transient shear flows of viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
32
(
3
),
269
294
(
1989
).
18.
Byars
,
J. A.
,
R. J.
Binnington
, and
D. V.
Boger
, “
Entry flow and constitutive modelling of fluid S1
,”
J. Non-Newtonian Fluid Mech.
72
(
2–3
),
219
235
(
1997
).
19.
Cao
,
J.
, and
A. E.
Likhtman
, “
Shear banding in molecular dynamics of polymer melts
,”
Phys. Rev. Lett.
108
,
028302
(
2012
).
20.
Cates
,
M. E.
, “
Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers)
,”
J. Phys. Chem.
94
(
1
),
371
375
(
1990
).
21.
Coussot
,
P.
,
J. S.
Raynaud
,
F.
Bertrand
,
P.
Moucheront
,
J. P.
Guilbaud
,
H. T.
Huynh
,
S.
Jarny
, and
D.
Lesueur
, “
Coexistence of liquid and solid phases in flowing soft-glassy materials
,”
Phys. Rev. Lett.
88
,
218301
(
2002
).
22.
Cromer
,
M.
,
M. C.
Villet
,
G. H.
Fredrickson
, and
L. G.
Leal
, “
Shear banding in polymer solutions
,”
Phys. Fluids
25
(
5
),
051703
(
2013
).
24.
Divoux
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
Stress overshoot in a simple yield stress fluid: An extensive study combining rheology and velocimetry
,”
Soft Matter
7
,
9335
9349
(
2011a
).
25.
Divoux
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids
,”
Soft Matter
7
,
8409
8418
(
2011b
).
23.
Divoux
,
T.
,
D.
Tamarii
,
C.
Barentin
, and
S.
Manneville
, “
Transient shear banding in a simple yield stress fluid
,”
Phys. Rev. Lett.
104
,
208301
(
2010
).
26.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. Part 2: Molecular motion under flow
,”
J. Chem. Soc. Faraday Trans. 2
74
,
1802
1817
(
1978
).
27.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1989
).
28.
Einaga
,
Y.
,
K.
Osaki
,
M.
Kurata
,
S.
Kimura
, and
M.
Tamura
, “
Stress relaxation of polymer solutions under large strain
,”
Polym. J.
2
(
4
),
550
552
(
1971
).
29.
Fang
,
Y.
,
G.
Wang
,
N.
Tian
,
X.
Wang
,
X.
Zhu
,
P.
Lin
,
G.
Ma
, and
L.
Li
, “
Shear inhomogeneity in poly(ethylene oxide) melts
,”
J. Rheol.
55
(
5
),
939
949
(
2011
).
30.
Fielding
,
S. M.
, “
Complex dynamics of shear banded flows
,”
Soft Matter
3
,
1262
1279
(
2007
).
31.
Fielding
,
S. M.
, “
Viscoelastic Taylor-Couette instability of shear banded flow
,”
Phys. Rev. Lett.
104
,
198303
(
2010
).
33.
Fielding
,
S. M.
, and
P. D.
Olmsted
, “
Kinetics of the shear banding instability in startup flows
,”
Phys. Rev. E
68
,
036313
(
2003a
).
34.
Fielding
,
S. M.
, and
P. D.
Olmsted
, “
Flow phase diagrams for concentration-coupled shear banding
,”
Eur. Phys. J. E
11
,
65
83
(
2003b
).
35.
Fielding
,
S. M.
, and
P. D.
Olmsted
, “
Spatio-temporal oscillations and rheochaos in a simple model of shear banding
,”
Phys. Rev. Lett.
92
,
084502
(
2004
).
36.
Gibaud
,
T.
,
D.
Frelat
, and
S.
Manneville
, “
Heterogeneous yielding dynamics in a colloidal gel
,”
Soft Matter
6
,
3482
3488
(
2010
).
37.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
(
12
),
69
109
(
1982
).
38.
Graham
,
R. S.
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
(
5
),
1171
1200
(
2003
).
40.
Helgeson
,
M. E.
,
M. D.
Reichert
,
Y. T.
Hu
, and
N. J.
Wagner
, “
Relating shear banding, structure, and phase behavior in wormlike micellar solutions
,”
Soft Matter
5
,
3858
3869
(
2009a
).
41.
Helgeson
,
M. E.
,
P. A.
Vasquez
,
E. W.
Kaler
, and
N. J.
Wagner
, “
Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition
,”
J. Rheol.
53
(
3
),
727
756
(
2009b
).
42.
Hu
,
Y. T.
, “
Steady-state shear banding in entangled polymers?
,”
J. Rheol.
54
(
6
),
1307
1323
(
2010
).
43.
Hu
,
Y. T.
, and
A.
Lips
, “
Kinetics and mechanism of shear banding in an entangled micellar solution
,”
J. Rheol.
49
(
5
),
1001
1027
(
2005
).
45.
Hu
,
Y. T.
,
C.
Palla
, and
A.
Lips
, “
Comparison between shear banding and shear thinning in entangled micellar solutions
,”
J. Rheol.
52
(
2
),
379
400
(
2008
).
44.
Hu
,
Y. T.
,
L.
Wilen
,
A.
Philips
, and
A.
Lips
, “
Is the constitutive relation for entangled polymers monotonic?
,”
J. Rheol.
51
(
2
),
275
295
(
2007
).
46.
Inn
,
Y. W.
,
K. F.
Wissbrun
, and
M. M.
Denn
, “
Effect of edge fracture on constant torque rheometry of entangled polymer solutions
,”
Macromolecules
38
(
22
),
9385
9388
(
2005
).
47.
Islam
,
M. T.
,
J.
Sanchez-Reyes
, and
L. A.
Archer
, “
Nonlinear rheology of highly entangled polymer liquids: Step shear damping function
,”
J. Rheol.
45
(
1
),
61
82
(
2001
).
48.
Johnson
,
M. W.
, and
J.
Segalman
, “
A model for viscoelastic fluid behavior which allows non-affine deformation
,”
J. Non-Newtonian Fluid Mech.
2
,
255
270
(
1977
).
49.
Juliani
and
L. A.
Archer
, “
Linear and nonlinear rheology of bidisperse polymer blends
,”
J. Rheol.
45
(
3
),
691
708
(
2001
).
50.
Khan
,
S. A.
, and
R. G.
Larson
, “
Comparison of simple constitutive equations for polymer melts in shear and biaxial and uniaxial extensions
,”
J. Rheol.
31
(
3
),
207
234
(
1987
).
51.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterwirth Publishers
,
Stoneham, MA
,
1988
).
52.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press, Inc.
,
New York
,
1999
).
53.
Larson
,
R. G.
,
E. S. G.
Shaqfeh
, and
S. J.
Muller
, “
A purely elastic instability in Taylor-Couette flow
,”
J. Fluid Mech.
218
,
573
600
(
1990
).
54.
Lerouge
,
S.
, and
J.-F.
Berret
, “
Shear-induced transitions and instabilities in surfactant wormlike micelles
,”
Polymer Character.: Adv. Polymer Sci.
230
,
1
71
(
2010
).
55.
Li
,
X.
, and
S.-Q.
Wang
, “
Elastic yielding after step shear and during LAOS in the absence of meniscus failure
,”
Rheol. Acta
49
,
985
991
(
2010
).
56.
Li
,
Y. F.
,
M.
Hu
,
G. B.
McKenna
,
C. J.
Dimitriou
,
G. H.
McKinley
,
R. M.
Mick
,
D. C.
Venerus
, and
L. A.
Archer
, “
Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions
,”
J. Rheol.
57
,
1411
1428
(
2013
).
57.
Likhtman
,
A. E.
, and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-poly equation
,”
J. Non-Newtonian Fluid Mech.
114
(
1
),
1
12
(
2003
).
58.
Lu
,
C. -Y. D.
,
P. D.
Olmsted
, and
R. C.
Ball
, “
Effects of nonlocal stress on the determination of shear banding flow
,”
Phys. Rev. Lett.
84
,
642
(
2000
).
59.
Mair
,
R. W.
, and
P. T.
Callaghan
, “
Observation of shear banding in worm-like micelles by NMR velocity imaging
,”
Europhys. Lett.
36
(
9
),
719
(
1996
).
60.
Mair
,
R. W.
, and
P. T.
Callaghan
, “
Shear flow of wormlike micelles in pipe and cylindrical Couette geometries as studied by nuclear magnetic resonance microscopy
,”
J. Rheol.
41
(
4
),
901
924
(
1997
).
61.
Makhloufi
,
R.
,
J. P.
Decruppe
,
A.
Aït-Ali
, and
R.
Cressely
, “
Rheo-optical study of worm-like micelles undergoing a shear banding flow
,”
Europhys. Lett.
32
(
3
),
253
(
1995
).
62.
Manneville
,
S.
, “
Recent experimental probes of shear banding
,”
Rheol. Acta
47
,
301
318
(
2008
).
63.
Manneville
,
S.
,
A.
Colin
,
G.
Waton
, and
F.
Schosseler
, “
Wall slip, shear banding, and instability in the flow of a triblock copolymer micellar solution
,”
Phys. Rev. E
75
,
061502
(
2007
).
64.
Manning
,
M. L.
,
J. S.
Langer
, and
J. M.
Carlson
, “
Strain localization in a shear transformation zone model for amorphous solids
,”
Phys. Rev. E
76
,
056106
(
2007
).
65.
Marrucci
,
G.
, and
N.
Grizzuti
, “
The free energy function of the Doi-Edwards theory: Analysis of the instabilities in stress relaxation
,”
J. Rheol.
27
(
5
),
433
450
(
1983
).
66.
Martin
,
J. D.
, and
Y. T.
Hu
, “
Transient and steady-state shear banding in aging soft glassy materials
,”
Soft Matter
8
,
6940
6949
(
2012
).
67.
Miller
,
E.
, and
J. P.
Rothstein
, “
Transient evolution of shear-banding wormlike micellar solutions
,”
J. Non-Newtonian Fluid Mech.
143
(
1
),
22
37
(
2007
).
69.
Moorcroft
,
R. L.
,
M. E.
Cates
, and
S. M.
Fielding
, “
Age-dependent transient shear banding in soft glasses
,”
Phys. Rev. Lett.
106
,
055502
(
2011
).
68.
Moorcroft
,
R. L.
, and
S. M.
Fielding
, “
Criteria for shear banding in time-dependent flows of complex fluids
,”
Phys. Rev. Lett.
110
,
086001
(
2013
).
71.
Olmsted
,
P. D.
, “
Perspectives on shear banding in complex fluids
,”
Rheol. Acta
47
,
283
300
(
2008
).
72.
Olmsted
,
P. D.
,
O.
Radulescu
, and
C. -Y. D.
Lu
, “
Johnson–Segalman model with a diffusion term in cylindrical Couette flow
,”
J. Rheol.
44
(
2
),
257
275
(
2000
).
73.
Osaki
,
K.
, “
On the damping function of shear relaxation modulus for entangled polymers
,”
Rheol. Acta
32
,
429
437
(
1993
).
75.
Osaki
,
K.
, and
J. L.
Schrag
, “
Viscoelastic properties of polymer solutions in high-viscosity solvents and limiting high-frequency behavior. I. Polystyrene and poly-α-methylstyrene
,”
Polym. J.
2
(
4
),
541
549
(
1971
).
76.
Osaki
,
K.
,
K.
Nishizawa
, and
M.
Kurata
, “
Material time constant characterizing the nonlinear viscoelasticity of entangled polymeric systems
,”
Macromolecules
15
(
4
),
1068
1071
(
1982
).
74.
Osaki
,
K.
, and
M.
Kurata
, “
Experimental appraisal of the Doi-Edwards theory for polymer rheology based on the data for polystyrene solutions
,”
Macromolecules
13
(
3
),
671
676
(
1980
).
77.
Ovarlez
,
G.
,
S.
Rodts
,
X.
Chateau
, and
P.
Coussot
, “
Phenomenology and physical origin of shear localization and shear banding in complex fluids
,”
Rheol. Acta
48
,
831
844
(
2009
).
78.
Paredes
,
J.
,
N.
Shahidzadeh-Bonn
, and
D.
Bonn
, “
Shear banding in thixotropic and normal emulsions
,”
J. Phys.: Condens. Matter
23
(
28
),
284116
(
2011
).
79.
Press
,
W. H.
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
(
Cambridge University Press
,
Cambridge
,
1992
).
80.
Quinzani
,
L. M.
,
G. H.
McKinley
,
R. A.
Brown
, and
R. C.
Armstrong
, “
Modeling the rheology of polyisobutylene solutions
,”
J. Rheol.
34
(
5
),
705
748
(
1990
).
81.
Ravindranath
,
S.
, and
S.-Q.
Wang
, “
What are the origins of stress relaxation behaviors in step shear of entangled polymer solutions?
,”
Macromolecules
40
(
22
),
8031
8039
(
2007
).
82.
Ravindranath
,
S.
, and
S.-Q.
Wang
, “
Steady state measurements in stress plateau region of entangled polymer solutions: Controlled-rate and controlled-stress modes
,”
J. Rheol.
52
(
4
),
957
980
(
2008
).
83.
Ravindranath
,
S.
,
S.-Q.
Wang
,
M.
Olechnowicz
, and
R. P.
Quirk
, “
Banding in simple steady shear of entangled polymer solutions
,”
Macromolecules
41
(
7
),
2663
2670
(
2008
).
84.
Ravindranath
,
S.
,
S.-Q.
Wang
,
M.
Olechnowicz
,
V.
Chavan
, and
R.
Quirk
, “
How polymeric solvents control shear inhomogeneity in large deformations of entangled polymer mixtures
,”
Rheol. Acta
50
,
97
105
(
2011
).
85.
Rodts
,
S.
,
J. C.
Baudez
, and
P.
Coussot
, “
From ‘discrete’ to ‘continuum’ flow in foams
,”
Europhys. Lett.
69
(
4
),
636
(
2005
).
86.
Rogers
,
S. A.
,
D.
Vlassopoulos
, and
P. T.
Callaghan
, “
Aging, yielding, and shear banding in soft colloidal glasses
,”
Phys. Rev. Lett.
100
,
128304
(
2008
).
87.
Rolón-Garrido
,
V.
, and
M.
Wagner
, “
The damping function in rheology
,”
Rheol. Acta
48
,
245
284
(
2009
).
88.
Salmon
,
J.-B.
,
A.
Colin
,
S.
Manneville
, and
F.
Molino
, “
Velocity profiles in shear-banding wormlike micelles
,”
Phys. Rev. Lett.
90
,
228303
(
2003a
).
89.
Salmon
,
J.-B.
,
S.
Manneville
, and
A.
Colin
, “
Shear banding in a lyotropic lamellar phase. I. Time-averaged velocity profiles
,”
Phys. Rev. E
68
,
051503
(
2003b
).
90.
Sanchez-Reyes
,
J.
, and
L. A.
Archer
, “
Step shear dynamics of entangled polymer liquids
,”
Macromolecules
35
(
13
),
5194
5202
(
2002
).
91.
Schmid
,
P. J.
, “
Nonmodal stability theory
,”
Annu. Rev. Fluid Mech.
39
(
1
),
129
162
(
2007
).
39.
Sollich
,
P.
,
F.
Lequeux
,
P.
Hebraud
, and
M. E.
Cates
, “
Rheology of soft glassy materials
,”
Phys. Rev. Lett.
78
,
2020
2023
(
1997
).
92.
Tapadia
,
P.
, and
S.-Q.
Wang
, “
Yieldlike constitutive transition in shear flow of entangled polymeric fluids
,”
Phys. Rev. Lett.
91
,
198301
(
2003
).
93.
Tapadia
,
P.
, and
S.-Q.
Wang
, “
Direct visualization of continuous simple shear in non-Newtonian polymeric fluids
,”
Phys. Rev. Lett.
96
,
016001
(
2006
).
94.
Venerus
,
D. C.
, “
A critical evaluation of step strain flows of entangled linear polymer liquids
,”
J. Rheol.
49
(
1
),
277
295
(
2005
).
95.
Vrentas
,
C. M.
, and
W. W.
Graessley
, “
Study of shear stress relaxation in well-characterized polymer liquids
,”
J. Rheol.
26
(
4
),
359
371
(
1982
).
96.
Wang
,
S.-Q.
,
S.
Ravindranath
,
P.
Boukany
,
M.
Olechnowicz
,
R. P.
Quirk
,
A.
Halasa
, and
J.
Mays
, “
Nonquiescent relaxation in entangled polymer liquids after step shear
,”
Phys. Rev. Lett.
97
,
187801
(
2006
).
97.
Yerushalmi
,
J.
,
S.
Katz
, and
R.
Shinnar
, “
The stability of steady shear flows of some viscoelastic fluids
,”
Chem. Eng. Sci.
25
(
12
),
1891
1902
(
1970
).
99.
Zhou
,
L.
,
L. P.
Cook
, and
G. H.
McKinley
, “
Multiple shear-banding transitions for a model of wormlike micellar solutions
,”
SIAM J. Appl. Math.
72
,
1192
1212
(
2012
).
98.
Zhou
,
L.
,
P. A.
Vasquez
,
L. P.
Cook
, and
G. H.
McKinley
, “
Modeling the inhomogeneous response and formation of shear bands in steady and transient flows of entangled liquids
,”
J. Rheol.
52
(
2
),
591
623
(
2008
).
You do not currently have access to this content.