The standard Folgar-Tucker (FT) orientation equation is a useful method for theoretically determining isotropic fiber orientation in concentrated suspensions. However, when quantitatively compared with related experimental observations, this equation demonstrates an over-prediction inaccuracy. Recently, the Phelps-Tucker anisotropic rotary diffusion (ARD) model has shown an ability to handle primary anisotropic fiber orientation. Nevertheless, the ARD tensor depending upon Hand's tensor is difficult to apply in general, because numerous parameters themselves are so sensitive as to affect the stability of any numerical results. To address these critical problems in predicting fiber orientation, this study proposes an improved ARD tensor combined with a new retardant principal rate (iARD-RPR) model. The RPR model is a coaxial correction of the orientation tensor for the FT equation. In addition, the iARD tensor, consisting of an identity tensor and a dimensionless fiber-rotary-resistance tensor, is more concise with two available parameters. As a validation, the iARD-RPR model nicely fits the orientation tensor components measured in transient simple shear flows. Of particular importance is the good agreement between the predictive fiber orientation distribution and the practical core-shell structure for the center-gated disk of injection molding of fiber-reinforced thermoplastics.

1.
Advani
,
S. G.
,
Flow and Rheology in Polymer Composites Manufacturing
(
Elsevier
,
New York
,
1994
).
2.
Advani
,
S. G.
, and
C. L.
Tucker
, “
The use of tensors to describe and predict fiber orientation in short fiber composites
,”
J. Rheol.
31
,
751
784
(
1987
).
3.
Advani
,
S. G.
, and
C. L.
Tucker
, “
Closure approximations for three-dimensional structure tensors
,”
J. Rheol.
34
,
367
386
(
1990
).
4.
Batchelor
,
G. K.
, “
Slender-body theory for particles of arbitrary cross-section in Stokes flow
,”
J. Fluid Mech.
44
,
419
440
(
1970
).
5.
Bay
,
R. S.
, “
Fiber orientation in injection molded composites: A comparison of theory and experiment
,” Ph.D. thesis,
University of Illinois at Urbana-Champaign
,
1991
.
6.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Fluid Mechanics
(
Wiley-Interscience
,
New York
,
1987
).
7.
Chung
,
D. H.
, and
T. H.
Kwon
, “
Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation
,”
J. Rheol.
46
,
169
194
(
2002
).
8.
Cintra
,
J. S.
 Jr.
, and
C. L.
Tucker
, “
Orthotropic closure approximations for flow-induced fiber orientation
,”
J. Rheol.
39
,
1095
1122
(
1995
).
9.
Cox
,
R. G.
, and
H.
Brenner
, “
The rheology of a suspension of particles in a Newtonian fluid
,”
Chem. Eng. Sci.
26
,
65
93
(
1971
).
10.
Dinh
,
S. M.
, and
R. C.
Armstrong
, “
A rheological equation of state for semiconcentrated fiber suspensions
,”
J. Rheol.
28
,
207
227
(
1984
).
11.
Eberle
,
A. P. R.
,
D. G.
Baird
,
P.
Wapperom
, and
G. M.
Vélez-García
, “
Using transient shear rheology to determine material parameters in fiber suspension theory
,”
J. Rheol.
53
,
685
705
(
2009
).
12.
Eberle
,
A. P. R.
,
G. M.
Vélez-García
,
D. G.
Baird
, and
P.
Wapperom
, “
Fiber orientation kinetics of a concentrated short glass fiber suspension in startup of simple shear flow
,”
J. Non-Newtonian Fluid Mech.
165
,
110
119
(
2010
).
13.
Ericksen
,
J. L.
, “
Anisotropic fluids
,”
Arch. Ration. Mech. Anal.
4
,
231
237
(
1960
).
14.
Férec
,
J.
,
G.
Ausias
,
M. C.
Heuzey
, and
P. J.
Carreau
, “
Modeling fiber interactions in semiconcentrated fiber suspensions
,”
J. Rheol.
53
,
49
72
(
2009
).
15.
Folgar
,
F.
, and
C. L.
Tucker
, “
Orientation behavior of fibers in concentrated suspensions
,”
J. Reinf. Plast. Compos.
3
,
98
119
(
1984
).
16.
Grmela
,
M.
, and
H. C.
Öttinger
, “
Dynamics and thermodynamics of complex fluids. I. Development of a general formalism
,”
Phys. Rev. E
56
,
6620
6632
(
1997
).
17.
Hand
,
G. L.
, “
A theory of anisotropic fluids
,”
J. Fluid Mech.
13
,
33
46
(
1962
).
18.
Hinch
,
E. J.
, and
L. G.
Leal
, “
Constitutive equations in suspension mechanics. Part I, general formulation
,”
J. Fluid Mech.
71
,
481
495
(
1975
).
19.
Huynh
,
H. M.
, “
Improved fiber orientation predictions for injection molded composites
,” Master's thesis,
University of Illinois at Urbana-Champaign
,
2001
.
20.
Jack
,
D. A.
,
B.
Schache
, and
D. E.
Smith
, “
Neural network-based closure for modeling short-fiber suspensions
,”
Polym. Compo.
31
(
7
),
1125
1141
(
2010
).
21.
Jack
,
D. A.
, and
D. E.
Smith
, “
Sixth-order fitted closures from the second-moment of the fiber orientation distribution for short fiber reinforced polymer melt flow simulations
,”
J. Thermoplast. Compos. Mater.
19
,
217
246
(
2006
).
22.
Jeffery
,
G. B.
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. A
102
,
161
179
(
1922
).
23.
Keshtkar
,
M.
,
M.-C.
Heuzey
,
P. J.
Carreau
,
M.
Rajabian
, and
C.
Dubois
, “
Rheological properties and microstructural evolution of semi-flexible fiber suspensions under shear flow
,”
J. Rheol.
54
,
197
222
(
2010
).
24.
Lee
,
S. M.
,
Handbook of Composite Reinforcements
(
VCH
,
New York
,
1993
).
25.
Lipscomb
,
G. G.
,
M. M.
Denn
,
D. U.
Hur
, and
D. V.
Boger
, “
The flow of fiber suspensions in complex geometries
,”
J. Non-Newtonian Fluid Mech.
26
,
297
325
(
1988
).
26.
Nguyen
,
B. N.
,
S. K.
Bapanapalli
,
J. D.
Holbery
,
M. T.
Smith
,
V.
Kunc
,
B. J.
Frame
,
J. H.
Phelps
, and
C. L.
Tucker
, “
Fiber length and orientation in long-fiber injection-molded thermoplastics—Part I: Modeling of microstructure and elastic properties
,”
J. Compos. Mater.
42
,
1003
1029
(
2008
).
27.
Nguyen
,
N.
,
X.
Jin
,
J.
Wang
,
J. H.
Phelps
,
C. L.
Tucker
,
V.
Kunc
,
S. K.
Bapanapalli
, and
M. T.
Smith
, “
Implementation of new process models for tailored polymer composite structures into processing software packages
,” the U.S. Department of Energy, Pacific Northwest National Laboratory, PNNL Report under Contract DE-AC05-76RL01830,
2010
.
28.
O'Gara
,
J. F.
,
M. G.
Wyzgoski
, and
G. E.
Novak
, “
Development of an iso standard for determining anisotropic properties of glass-filled thermoplastics
,” in
Proceedings of the 61th Annual Technical Conference and Exhibition
, SPE ANTEC 2003, Nashville, TN, May 4–8,
2003
.
29.
Ortman
,
K. C.
,
N.
Agarwal
,
D. G.
Baird
,
P.
Wapperom
, and
A. J.
Giacomin
, “
Transient shear rheology of long glass fiber filled polypropylene using a sliding plate rheometer
,”
Macromolecules and Interfaces Institute Technical Conference and Review
, Blacksburg, VA, 11–13 October,
2010
.
30.
Ortman
,
K. C.
,
N.
Agarwal
,
A. P. R.
Eberle
,
D. G.
Baird
,
P.
Wapperom
, and
A. J.
Giacomin
, “
Transient shear flow behavior of concentrated long glass fiber suspensions in a sliding plate rheometer
,”
J. Non-Newtonian Fluid Mech.
166
,
884
895
(
2011
).
31.
Öttinger
,
H. C.
, and
M.
Grmela
, “
Dynamics and thermodynamics of complex fluids. II. Illustration of a GENERIC formalism
,”
Phys. Rev. E
56
,
6633
6655
(
1997
).
32.
Petrie
,
C. J. S.
, “
The rheology of fibre suspensions
,”
J. Non-Newtonian Fluid Mech.
87
,
369
402
(
1999
).
33.
Phan-Thien
,
N.
,
X.-J.
Fan
,
R. I.
Tanner
, and
R.
Zheng
, “
Folgar–Tucker constant for a fibre suspension in a Newtonian fluid
,”
J. Non-Newtonian Fluid Mech.
103
,
251
260
(
2002
).
34.
Phelps
,
J. H.
, “
Processing-microstructure models for short- and long-fiber thermoplastic composites
,” Ph.D. thesis,
University of Illinois at Urbana-Champaign
,
2009
.
35.
Phelps
,
J. H.
, and
C. L.
Tucker
, “
An anisotropic rotary diffusion model for fiber orientation in short- and long-fiber thermoplastics
,”
J. Non-Newtonian Fluid Mech.
156
,
165
176
(
2009
).
36.
Press
,
W. H.
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
(
Cambridge University Press
,
New York
,
2007
).
37.
Sepehr
,
M.
,
G.
Ausias
, and
P. J.
Carreau
, “
Rheological properties of short fiber filled polypropylene in transient shear flow
,”
J. Non-Newtonian Fluid Mech.
123
,
19
32
(
2004
).
38.
Strautins
,
U.
, and
A.
Latz
, “
Flow-driven orientation dynamics of semiflexible fiber systems
,”
Rheol. Acta
46
,
1057
1064
(
2007
).
39.
Svendsen
,
B.
, and
A.
Bertram
, “
On frame-indifference and form-invariance in constitutive theory
,”
Acta Mech.
132
,
195
207
(
1999
).
40.
Tseng
,
H.-C.
,
R.-Y.
Chang
, and
C.-H.
Hsu
, “
Method and computer readable media for determining orientation of fibers in a fluid
,” U.S. patent pending in USPTO with publication application number of US-2012-0330627-A1 (
2012
).
41.
Tucker
,
C. L.
, and
H. M.
Huynh
, “
Fiber orientation in short flow length parts: Limitations of current predictions
,” in
Proceedings of the 17th Annual Meeting of the Polymer Processing Society
, Montreal, Quebec, Canada, 21–24 May,
2001
.
42.
Tucker
,
C. L.
,
J.
Wang
, and
J. F.
O'Gara
, “
Method and article of manufacture for determining a rate of change of orientation of a plurality of fibers disposed in a fluid
,” U.S. patent 7,266,469 B1 (
2007
).
43.
Vélez-García
,
G. M.
,
S. M.
Mazahir
,
P.
Wapperom
, and
D.
Baird
, “
Simulation of injection molding using a model with delayed fiber orientation
,”
Int. Polym. Process
26
(
3
),
331
339
(
2011
).
44.
VerWeyst
,
B. E.
, “
Numerical predictions of flow-induced fiber orientation in three-dimensional geometries
,” Ph.D. thesis,
University of Illinois at Urbana-Champaign
,
1998
.
45.
Wang
,
J.
, “
Improved fiber orientation predictions for injection molded composites
,” Ph.D. thesis,
University of Illinois at Urbana-Champaign
,
2007
.
48.
Wang
,
J.
,
C. L.
Tucker
,
J. F.
O'Gara
, and
G.
DeBarr
, “
Improved fiber orientation predictions for injection-molded composites
,” in
Proceedings of the 20th Annual Meeting of the Polymer Processing Society
, Akron, Ohio, USA, 20–24 June,
2004
.
47.
Wang
,
J.
,
J. F.
O'Gara
, and
C. L.
Tucker
, “
An objective model for slow orientation kinetics in concentrated fiber suspensions: Theory and rheological evidence
,”
J. Rheol.
52
,
1179
1200
(
2008
).
46.
Wang
,
J.
, and
X.
Jin
, “
Comparison of recent fiber orientation models in autodesk moldflow insight simulations with measured fiber orientation data
,” in
Proceedings of the Polymer Processing Society 26th Annual Meeting
, Banff, Canada, July 4–8,
2010
.
49.
Wetzel
,
E. D.
, “
Modeling flow-induced microstructure of inhomogeneous liquid-liquid mixtures
,” Ph.D. thesis,
University of Illinois at Urbana-Champaign
,
1999
.
50.
Zheng
,
R.
,
R. I.
Tanner
, and
X.-J.
Fan
,
Injection Molding: Integration of Theory and Modeling Methods
(
Springer
,
Berlin
,
2011
).
You do not currently have access to this content.