The influence of nonquiescent relaxation of isotactic polypropylene on flow-induced crystallization (FIC) is investigated by a combination of particle tracking velocimeter (PTV) with a cone-plate shearing geometry and synchrotron radiation microbeam wide-angle X-ray diffraction (SR-μWAXD), which is aimed to correlate real flow profile and distribution of crystal orientation. With PTV technique, we observed that flow remains homogeneous during shear, while postshear movement and delayed fracture take place after a step strain when large shear rates and strains were imposed. Delayed fracture slices samples into several layers which move either forward or backward after the cessation of shear imposed externally. SR-μWAXD measurements reveal that the layers moving forward keep high crystal orientations while the layers moving backward show low orientations, which gives an inhomogeneous distribution of crystal orientation across the thickness of sheared samples. The correlation between moving direction and crystal orientation indicates that delayed fracture stems from the interplay between inertia and elastic retraction. The nonquiescent and inhomogeneous chain relaxation due to delayed fracture affects FIC nonuniformly and introduces complication to correlate crystallization behavior with apparent flow parameters.

1.
Adams
,
J. M.
, and
P. D.
Olmsted
, “
Comment on ‘Nonmonotonic models are not necessary to obtain shear banding phenomena in entangled polymer solutions’ Reply
,”
Phys. Rev. Lett.
103
,
219802
(
2009a
).
2.
Adams
,
J. M.
, and
P. D.
Olmsted
, “
Nonmonotonic models are not necessary to obtain shear banding phenomena in entangled polymer solutions
,”
Phys. Rev. Lett.
102
,
067801
(
2009b
).
3.
Archer
,
L. A.
, and
R. G.
Larson
, “
Direct measurements of slip in sheared polymer-solutions
,”
J. Fluid Mech.
301
,
133
151
(
1995
).
4.
Archer
,
L. A.
,
Y. L.
Chen
, and
R. G.
Larson
, “
Delayed slip after step strains in highly entangled polystyrene solutions
,”
J. Rheol.
39
,
519
525
(
1995
).
5.
Balzano
,
L. G.
,
S.
Rastogi
, and
G. W. M.
Peters
, “
Crystallization and precursors during fast short-term shear
,”
Macromolecules
42
,
2088
2092
(
2009
).
6.
Bertola
,
V.
,
B.
Meulenbroek
,
C.
Wagner
,
C.
Storm
,
A.
Morozov
,
W.
van Saarloos
, and
D.
Bonn
, “
Experimental evidence for an intrinsic route to polymer melt fracture phenomena: A nonlinear instability of viscoelastic Poiseuille flow
,”
Phys. Rev. Lett.
90
,
114502
(
2003
).
7.
Boukany
,
P. E.
, and
S. Q.
Wang
, “
A correlation between velocity profile and molecular weight distribution in sheared entangled polymer solutions
,”
J. Rheol.
51
,
217
233
(
2007
).
8.
Boukany
,
P. E.
, and
S. Q.
Wang
, “
Exploring origins of interfacial yielding and wall slip in entangled linear melts during shear or after shear cessation
,”
Macromolecules
42
,
2222
2228
(
2009
).
9.
Cao
,
J.
, and
A. E.
Likhtman
, “
Shear banding in molecular dynamics of polymer melts
,”
Phys. Rev. Lett.
108
,
028302
(
2012
).
10.
Cates
,
M. E.
,
T. C. B.
Mcleish
, and
G.
Marrucci
, “
The rheology of entangled polymers at very high shear rates
,”
Europhys. Lett.
21
,
451
456
(
1993
).
11.
Chellamuthu
,
M.
,
D.
Arora
,
H. H.
Winter
, and
J. P.
Rothstein
, “
Extensional flow-induced crystallization of isotactic poly-1-butene using a filament stretching rheometer
,”
J. Rheol.
55
,
901
920
(
2011
).
12.
Choi
,
K. J.
,
J. E.
Spruiell
, and
J. L.
White
, “
Orientation and morphology of high-density polyethylene film produced by the tubular blowing method and its relationship to process conditions
,”
J. Polym. Sci., Part B: Polym. Phys.
20
,
27
47
(
1982
).
13.
Cong
,
Y. H.
,
Z. H.
Hong
,
W. M.
Zhou
,
W.
Chen
,
F. M.
Su
,
H. L.
Li
,
X. Y.
Li
,
K.
Yang
,
X. H.
Yu
,
Z. M.
Qi
, and
L. B.
Li
, “
Conformational ordering on the growth front of isotactic polypropylene spherulite
,”
Macromolecules
45
,
8674
8680
(
2012
).
14.
Cui
,
K. P.
,
L. P.
Meng
,
N.
Tian
,
W. Q.
Zhou
,
Y. P.
Liu
,
Z.
Wang
,
J.
He
, and
L. B.
Li
, “
Self-acceleration of nucleation and formation of shish in extension-induced crystallization with strain beyond fracture
,”
Macromolecules
45
,
5477
5486
(
2012
).
15.
D'Avino
,
G.
,
M. A.
Hulsen
, and
P. L.
Maffettone
, “
Decoupled transient schemes for viscoelastic fluid flow with inertia
,”
Comput. Fluids
66
,
183
193
(
2012
).
16.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. 4. Rheological properties
,”
J. Chem. Soc., Faraday Trans 2
75
,
38
54
(
1979
).
17.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
18.
Doufas
,
A. K.
,
L.
Rice
, and
W.
Thurston
, “
Shear and extensional rheology of polypropylene melts: Experimental and modeling studies
,”
J. Rheol.
55
,
95
126
(
2011
).
19.
Elmoumni
,
A.
,
H. H.
Winter
,
A. J.
Waddon
, and
H.
Fruitwala
, “
Correlation of material and processing time scales with structure development in isotactic polypropylene crystallization
,”
Macromolecules
36
,
6453
6461
(
2003
).
20.
Fang
,
Y. Y.
,
G. L.
Wang
,
N.
Tian
,
X.
Wang
,
X. Y.
Zhu
,
P. P.
Lin
,
G. L.
Ma
, and
L. B.
Li
, “
Shear inhomogeneity in poly(ethylene oxide) melts
,”
J. Rheol.
55
,
939
949
(
2011
).
21.
Fardin
,
M. A.
,
T.
Divoux
,
M. A.
Guedeau-Boudeville
,
I.
Buchet-Maulien
,
J.
Browaeys
,
G. H.
McKinley
,
S.
Manneville
, and
S.
Lerouge
, “
Shear-banding in surfactant wormlike micelles: Elastic instabilities and wall slip
,”
Soft Matter
8
,
2535
2553
(
2012a
).
22.
Fardin
,
M. A.
,
T. J.
Ober
,
C.
Gay
,
G.
Gregoire
,
G. H.
McKinley
, and
S.
Lerouge
, “
Potential ‘ways of thinking’ about the shear-banding phenomenon
,”
Soft Matter
8
,
910
922
(
2012b
).
23.
Fukushima
,
H.
,
Y.
Ogino
,
G.
Matsuba
,
K.
Nishida
, and
T.
Kanaya
, “
Crystallization of polyethylene under shear flow as studied by time resolved depolarized light scattering. Effects of shear rate and shear strain
,”
Polymer
46
,
1878
1885
(
2005
).
24.
Furukawa
,
A.
, and
H.
Tanaka
, “
Violation of the incompressibility of liquid by simple shear flow
,”
Nature
443
,
434
438
(
2006
).
25.
Furukawa
,
A.
, and
H.
Tanaka
, “
Inhomogeneous flow and fracture of glassy materials
,”
Nature Mater.
8
,
601
609
(
2009
).
26.
Graessley
,
W. W.
, “
Entangled linear, branched and network polymer systems – Molecular theories
,”
Adv. Polym. Sci.
47
,
67
117
(
1982
).
27.
Graessley
,
W. W.
, and
S. T.
Milner
, “
Inertially driven transient response in polymeric liquids
,”
J. Non-Newtonian Fluid Mech.
159
,
26
33
(
2009
).
28.
Graham
,
R. S.
,
A. E.
Likhtman
, and
T. C. B.
McLeish
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
29.
Grillet
,
A. M.
,
A. C. B.
Bogaerds
,
G. W. M.
Peters
, and
F. P. T.
Baaijens
, “
Stability analysis of constitutive equations for polymer melts in viscometric flows
,”
J. Non-Newtonian Fluid Mech.
103
,
221
250
(
2002
).
30.
Heeley
,
E. L.
,
C. M.
Fernyhough
,
R. S.
Graham
,
P. D.
Olmsted
,
N. J.
Inkson
,
J.
Embery
,
D. J.
Groves
,
T. C. B.
McLeish
,
A. C.
Morgovan
,
F.
Meneau
,
W.
Bras
, and
A. J.
Ryan
, “
Shear-induced crystallization in blends of model linear and long-chain branched hydrogenated polybutadienes
,”
Macromolecules
39
,
5058
5071
(
2006
).
31.
Hierzenberger
,
P.
,
D.
Stifter
,
E.
Leiss-Holzinger
and
G.
Eder
, “
In-situ monitoring of polymer crystallization by polarization-sensitive optical coherence tomography
,”
AIP Conf. Proc.
1255
,
43
45
(
2010
).
32.
Hill
,
M. J.
, and
A.
Keller
, “
Direct evidence for distinctive, stress-induced nucleus crystals in crystallization of oriented polymer melts
,”
J. Macromol. Sci., Phys. B
3
,
153
159
(
1969
).
33.
Housmans
,
J. W.
,
R. J. A.
Steenbakkers
,
P. C.
Roozemond
,
G. W. M.
Peters
, and
H. E. H.
Meijer
, “
Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene
,”
Macromolecules
42
,
5728
5740
(
2009
).
34.
Hsiao
,
B. S.
,
L.
Yang
,
R. H.
Somani
,
C. A.
Avila-Orta
, and
L.
Zhu
, “
Unexpected shish-kebab structure in a sheared polyethylene melt
,”
Phys. Rev. Lett.
94
,
117802
(
2005
).
35.
Inoue
,
T.
,
Y.
Yamashita
, and
K.
Osaki
, “
Viscoelasticity of an entangled polymer solution with special attention on a characteristic time for nonlinear behavior
,”
Macromolecules
35
,
1770
1775
(
2002
).
36.
Keller
,
A.
, and
H. W. H.
Kolnaar
, “
Flow induced orientation and structure formation
,”
Mater. Sci. Technol.
18
,
189
268
(
1997
).
37.
Kimata
,
S.
,
T.
Sakurai
,
Y.
Nozue
,
T.
Kasahara
,
N.
Yamaguchi
,
T.
Karino
,
M.
Shibayama
, and
J. A.
Kornfield
, “
Molecular basis of the shish-kebab morphology in polymer crystallization
,”
Science
316
,
1014
1017
(
2007
).
38.
Kornfield
,
J. A.
,
G.
Kumaraswamy
, and
A. M.
Issaian
, “
Recent advances in understanding flow effects on polymer crystallization
,”
Ind. Eng. Chem. Res.
41
,
6383
6392
(
2002
).
39.
Kumaraswamy
,
G.
,
A. M.
Issaian
, and
J. A.
Kornfield
, “
Shear-enhanced crystallization in isotactic polypropylene. 1. Correspondence between in situ rheo-optics and ex situ structure determination
,”
Macromolecules
32
,
7537
7547
(
1999
).
40.
Kumaraswamy
,
G.
,
R. K.
Verma
,
A. M.
Issaian
,
P.
Wang
,
J. A.
Kornfield
,
F.
Yeh
,
B. S.
Hsiao
, and
R. H.
Olley
, “
Shear-enhanced crystallization in isotactic polypropylene part 2. Analysis of the formation of the oriented ‘skin’
,”
Polymer
41
,
8931
8940
(
2000
).
41.
Lamberti
,
G.
, “
Flow-induced crystallization during isotactic polypropylene film casting
,”
Polym. Eng. Sci.
51
(
5
),
851
861
(
2011
).
42.
Lamberti
,
G.
,
G. W. M.
Peters
, and
G.
Titomanlio
, “
Crystallinity and linear rheological properties of polymers
,”
Int. Polym. Process.
22
(
3
),
303
310
(
2007
).
43.
Larson
,
R. G.
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
,
213
263
(
1992
).
44.
Larson
,
R. G.
,
S. A.
Khan
, and
V. R.
Raju
, “
Relaxation of stress and birefringence in polymers of high molecular-weight
,”
J. Rheol.
32
,
145
161
(
1988
).
45.
Lee
,
J. S.
, and
G. G.
Fuller
, “
Shear-wave propagation after stepwise increase of shear rate
,”
J. Non-Newtonian Fluid Mech.
39
,
1
15
(
1991
).
46.
Li
,
L. B.
, and
W. H.
de Jeu
, “
Flow-induced mesophases in crystallizable polymers
,”
Adv. Polym. Sci.
181
,
75
120
(
2005
).
47.
Marrucci
,
G.
, and
N.
Grizzuti
, “
The free-energy function of the Doi-Edwards theory – Analysis of the instabilities in stress-relaxation
,”
J. Rheol.
27
,
433
450
(
1983
).
48.
Mochimaru
,
Y.
, “
Unsteady-state development of plane couette-flow for viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
12
,
135
152
(
1983
).
49.
Morrison
,
F. A.
, and
R. G.
Larson
, “
A study of shear-stress relaxation anomalies in binary-mixtures of monodisperse polystyrenes
,”
J. Polym. Sci., Part B: Polym. Phys.
30
,
943
950
(
1992
).
50.
Mykhaylyk
,
O. O.
,
P.
Chambon
,
C.
Impradice
,
J. P. A.
Fairclough
,
N. J.
Terrill
, and
A. J.
Ryan
, “
Control of structural morphology in shear-induced crystallization of polymers
,”
Macromolecules
43
,
2389
2405
(
2010
).
51.
Mykhaylyk
,
O. O.
,
P.
Chambon
,
R. S.
Graham
,
J. P. A.
Fairclough
,
P. D.
Olmsted
, and
A. J.
Ryan
, “
The specific work of flow as a criterion for orientation in polymer crystallization
,”
Macromolecules
41
,
1901
1904
(
2008
).
52.
Okeson
,
J. K.
, and
A. H.
Emery
, “
Transient development of velocity profiles during shear-flow of a viscoelastic fluid
,”
Trans. Soc. Rheol.
19
,
81
89
(
1975
).
53.
Osaki
,
K.
, “
On the damping function of shear relaxation modulus for entangled polymers
,”
Rheol. Acta
32
,
429
437
(
1993
).
54.
Othman
,
N.
,
B.
Jazrawi
,
P.
Mehrkhodavandi
, and
S. G.
Hatzikiriakos
, “
Wall slip and melt fracture of poly (lactides)
,”
Rheol. Acta
51
,
357
369
(
2012
).
55.
Pantani
,
R.
,
I.
Coccorullo
,
V.
Volpe
, and
G.
Titomanlio
, “
Shear-induced nucleation and growth in isotactic polypropylene
,”
Macromolecules
43
,
9030
9038
(
2010
).
56.
Pennings
,
A. J.
, and
A. M.
Kiel
, “
Fractionation of polymers by crystallization from solution. 3. On morphology of fibrillar polyethylene crystals grown in solution
,”
Colloid Polym. Sci.
205
,
160
162
(
1965
).
57.
Peterlin
,
A.
, “
Drawing and extrusion of semicrystalline polymers
,”
Colloid Polym. Sci.
265
,
357
382
(
1987
).
58.
Plucktaveesak
,
N.
,
S. Q.
Wang
, and
A.
Halasa
, “
Interfacial flow behavior of highly entangled polybutadiene solutions
,”
Macromolecules
32
,
3045
3050
(
1999
).
59.
Ratajski
,
E.
, and
H.
Janeschitz-Kriegl
, “
Flow-induced crystallization in polymer melts: On the correlation between nucleation and specific work
,”
Polym. Bull.
68
,
1723
1730
(
2012
).
60.
Smook
,
J.
, and
A. J.
Pennings
, “
Elastic flow instabilities and shish-kebab formation during gel-spinning of ultrahigh molecular-weight polyethylene
,”
J. Mater. Sci.
19
,
31
43
(
1984
).
61.
Somani
,
R. H.
,
L.
Yang
,
B. S.
Hsiao
,
T.
Sun
,
N. V.
Pogodina
, and
A.
Lustiger
, “
Shear-induced molecular orientation and crystallization in isotactic polypropylene: Effects of the deformation rate and strain
,”
Macromolecules
38
,
1244
1255
(
2005a
).
62.
Somani
,
R. H.
,
L.
Yang
,
L.
Zhu
, and
B. S.
Hsiao
, “
Flow-induced shish-kebab precursor structures in entangled polymer melts
,”
Polymer
46
,
8587
8623
(
2005b
).
63.
Tapadia
,
P.
, and
S. Q.
Wang
, “
Direct visualization of continuous simple shear in non-newtonian polymeric fluids
,”
Phys. Rev. Lett.
96
,
016001
(
2006
).
64.
Tian
,
N.
,
W.
Zhou
,
K.
Cui
,
Y.
Liu
,
Y.
Fang
,
X.
Wang
,
L.
Liu
, and
L.
Li
, “
Extension flow induced crystallization of poly(ethylene oxide)
,”
Macromolecules
44
,
7704
7712
(
2011
).
65.
Titomanlio
,
G.
, and
G.
Lamberti
, “
Modeling flow induced crystallization in film casting of polypropylene
,”
Rheol. Acta
43
(
2
),
146
158
(
2004
).
66.
van Meerveld
,
J.
,
G.
Peters
, and
M.
Hütter
, “
Towards a rheological classification of flow induced crystallization experiments of polymer melts
,”
Rheol. Acta
44
(
2
),
119
134
(
2004
).
67.
Vinogradov
,
G. V.
,
A.
Ya. Malkin
,
Yu. G.
Yanovskii
,
E. K.
Borisenkova
,
B. V.
Yarlykov
, and
G. V.
Berezhnaya
, “
Viscoelastic properties and flow of narrow distribution polybutadienes and polyisoprenes
,”
J. Polym. Sci., Part A2
10
,
1061
1084
(
1972
).
68.
Vleeshouwers
,
S.
, and
H. E. H.
Meijer
, “
A rheological study of shear induced crystallization
,”
Rheol. Acta
35
,
391
399
(
1996
).
69.
Wang
,
S. Q.
,
S.
Ravindranath
, and
P. E.
Boukany
, “
Homogeneous shear, wall slip, and shear banding of entangled polymeric liquids in simple-shear rheometry: A roadmap of nonlinear rheology
,”
Macromolecules
44
,
183
190
(
2011a
).
70.
Wang
,
S. Q.
,
S.
Ravindranath
,
P.
Boukany
,
M.
Olechnowicz
,
R. P.
Quirk
,
A.
Halasa
, and
J.
Mays
, “
Nonquiescent relaxation in entangled polymer liquids after step shear
,”
Phys. Rev. Lett.
97
,
187801
(
2006
).
71.
Wang
,
S. Q.
,
S.
Ravindranath
,
Y. Y.
Wang
, and
P. Y.
Boukany
, “
New theoretical considerations in polymer rheology: Elastic breakdown of chain entanglement network
,”
J. Chem. Phys.
127
,
064903
(
2007
).
72.
Wang
,
Y. Y.
, and
S. Q.
Wang
, “
From elastic deformation to terminal flow of a monodisperse entangled melt in uniaxial extension
,”
J. Rheol.
52
,
1275
1290
(
2008
).
73.
Wang
,
Y. Y.
,
S. W.
Cheng
, and
S. Q.
Wang
, “
Basic characteristics of uniaxial extension rheology: Comparing monodisperse and bidisperse polymer melts
,”
J. Rheol.
55
,
1247
1270
(
2011b
).
74.
White
,
J. L.
, and
M.
Cakmak
, “
Orientation development and crystallization in melt spinning of fibers
,”
Adv. Polym. Technol.
6
,
295
337
(
1986
).
75.
White
,
J. L.
, and
M.
Cakmak
, “
Orientation, crystallization, and haze development in tubular film extrusion
,”
Adv. Polym. Technol.
8
,
27
61
(
1988
).
76.
Yan
,
T. Z.
,
B. J.
Zhao
,
Y. H.
Cong
,
Y. Y.
Fang
,
S. W.
Cheng
,
L. B.
Li
,
G. Q.
Pan
,
Z. J.
Wang
,
X. H.
Li
, and
F. G.
Bian
, “
Critical strain for shish-kebab formation
,”
Macromolecules
43
,
602
605
(
2010
).
77.
Yang
,
L.
,
R. H.
Somani
,
I.
Sics
,
B. S.
Hsiao
,
R.
Kolb
,
H.
Fruitwala
, and
C.
Ong
, “
Shear-induced crystallization precursor studies in model polyethylene blends by in-situ rheo-saxs and rheo-waxd
,”
Macromolecules
37
,
4845
4859
(
2004
).
78.
Zhao
,
B. J.
,
X. Y.
Li
,
Y. J.
Huang
,
Y. H.
Cong
,
Z.
Ma
,
C. G.
Shao
,
H. N.
An
,
T. Z.
Yan
, and
L. B.
Li
, “
Inducing crystallization of polymer through stretched network
,”
Macromolecules
42
,
1428
1432
(
2009
).
You do not currently have access to this content.